sd-forge-layerdiffuse

sd-forge-layerdiffuse

基于Stable Diffusion的透明图层生成扩展

sd-forge-layerdiffuse是一个Stable Diffusion WebUI扩展,用于生成透明图像和图层。通过VAE管道和LoRA模型,它将SDXL或SD1.5转换为透明图像生成器。支持前景、背景和混合图像生成,能处理半透明效果和复杂细节。该扩展提供了比简单背景去除更先进的透明图像处理方法。

sd-forge-layerdiffuseSDXL透明图像生成VAEStable DiffusionGithub开源项目

sd-forge-layerdiffuse

Transparent Image Layer Diffusion using Latent Transparency

image

This is a WIP extension for SD WebUI (via Forge) to generate transparent images and layers.

Updates

  1. img2img is finished! See also here

Before You Start

Because many people may be curious about how the latent preview looks like during a transparent diffusion process, I recorded a video so that you can see it before you download the models and extensions:

https://github.com/layerdiffusion/sd-forge-layerdiffusion/assets/161511761/e93b71d1-3560-48e2-a970-0b8efbfebb42

You can see that the native transparent diffusion can process transparent glass, semi-transparent glowing effects, etc, that are not possible with simple background removal methods. Native transparent diffusion also gives you detailed fur, hair, whiskers, and detailed structure like that skeleton.

Model Notes

Note that in this extension, all model downloads/selections are fully automatic. In fact most users can just skip this section.

Below models are released:

  1. layer_xl_transparent_attn.safetensors This is a rank-256 LoRA to turn a SDXL into a transparent image generator. It will change the latent distribution of the model to a "transparent latent space" that can be decoded by the special VAE pipeline.
  2. layer_xl_transparent_conv.safetensors This is an alternative model to turn your SDXL into a transparent image generator. This safetensors file includes an offset of all conv layers (and actually, all layers that are not q,k,v of any attention layers). These offsets can be merged to any XL model to change the latent distribution to transparent images. Because we excluded the offset training of any q,k,v layers, the prompt understanding of SDXL should be perfectly preserved. However, in practice, I find the layer_xl_transparent_attn.safetensors will lead to better results. This layer_xl_transparent_conv.safetensors is still included for some special use cases that needs special prompt understanding. Also, this model may introduce a strong style influence to the base model.
  3. layer_xl_fg2ble.safetensors This is a safetensors file includes offsets to turn a SDXL into a layer generating model, that is conditioned on foregrounds, and generates blended compositions.
  4. layer_xl_fgble2bg.safetensors This is a safetensors file includes offsets to turn a SDXL into a layer generating model, that is conditioned on foregrounds and blended compositions, and generates backgrounds.
  5. layer_xl_bg2ble.safetensors This is a safetensors file includes offsets to turn a SDXL into a layer generating model, that is conditioned on backgrounds, and generates blended compositions.
  6. layer_xl_bgble2fg.safetensors This is a safetensors file includes offsets to turn a SDXL into a layer generating model, that is conditioned on backgrounds and blended compositions, and generates foregrounds.
  7. vae_transparent_encoder.safetensors This is an image encoder to extract a latent offset from pixel space. The offset can be added to latent images to help the diffusion of transparency. Note that in the paper we used a relatively heavy model with exactly same amount of parameters as the SD VAE. The released model is more light weighted, requires much less vram, and does not influence result quality in my tests.
  8. vae_transparent_decoder.safetensors This is an image decoder that takes SD VAE outputs and latent image as inputs, and outputs a real PNG image. The model architecture is also more lightweight than the paper version to reduce VRAM requirement. I have made sure that the reduced parameters does not influence result quality.
  9. layer_sd15_vae_transparent_encoder.safetensors Same as above VAE encoder, but fine-tuned for SD1.5.
  10. layer_sd15_vae_transparent_decoder.safetensors Same as above VAE decoder, but fine-tuned for SD1.5.
  11. layer_sd15_transparent_attn.safetensors This is a rank-256 LoRA to turn a SD1.5 into a transparent image generator. It will change the latent distribution of the model to a "transparent latent space" that can be decoded by the special VAE pipeline.
  12. layer_sd15_joint.safetensors This model file allows for generating all layers together with SD1.5. It includes two rank-256 loras (foreground lora and background lora), and an attention sharing module to share attention between multiple diffusion processes on par. Note that different from paper, this model file includes an additional "blended lora", and it actually can generate three images together (fg, bg, and blended image). Generating blended images together with fg and bg is helpful for structural understanding in our very recent tests.
  13. layer_sd15_fg2bg.safetensors This model file allows for generating background from foreground with SD1.5. It includes a rank-256 lora and an attention sharing module to share attention between multiple diffusion processes on par. This model file includes an additional "blended lora", and it actually can generate two images together (bg and blended image). Generating blended images together with bg is helpful for structural understanding in our very recent tests. Besides, to save VRAM, the fg is directly feed into all attention layers as control signal, rather than creating another diffusion pass.
  14. layer_sd15_bg2fg.safetensors This model file allows for generating foreground from background with SD1.5. It includes a rank-256 lora and an attention sharing module to share attention between multiple diffusion processes on par. This model file includes an additional "blended lora", and it actually can generate two images together (fg and blended image). Generating blended images together with fg is helpful for structural understanding in our very recent tests. Besides, to save VRAM, the bg is directly feed into all attention layers as control signal, rather than creating another diffusion pass.

Below models may be released soon (if necessary):

  1. SDXL models that can generate foreground and background together and SDXL's one step conditional model. (Note that all joint models for SD1.5 are already released) I put this model on hold because of these reasons: (1) the other released models can already achieve all functionalities and this model does not bring more functionalities. (2) the inference speed of this model is 3x slower than others and requires 4x more VRAM than other released model, and I am working on reducing the VRAM of this model and speed up the inference. (3) This model will involve more hyperparameters and if demanded, I will investigate the best practice for inference/training before release it.
  2. The current background-conditioned foreground model for SDXL may be a bit too lightweight. I will probably release a heavier one with more parameters and different behaviors (see also the discussions later).
  3. Because the difference between diffusers training and k-diffusion inference, I can observe some mystical problems like sometimes DPM++ will give artifacts but Euler A will fix it. I am looking into it and may provide some revised model that works better with all A1111 samplers.
  4. Two-step foreground and background conditional models for SD1.5. (Note that one-step conditional/joint models are already released.)

Sanity Check

SDXL

We highly encourage you to go through the sanity check and get exactly same results (so that if any problem occurs, we will know if the problem is on our side).

The two used models are:

  1. https://civitai.com/models/133005?modelVersionId=198530 Juggernaut XL V6 (note that the used one is V6, not v7 or v8 or V9)
  2. https://civitai.com/models/261336?modelVersionId=295158 anima_pencil-XL 1.0.0 (note that the used one is 1.0.0, not 1.5.0)

We will first test transparent image generating. Set your extension to this:

image

an apple, high quality

Negative prompt: bad, ugly

Steps: 20, Sampler: DPM++ 2M SDE Karras, CFG scale: 5, Seed: 12345, Size: 1024x1024, Model hash: 1fe6c7ec54, Model: juggernautXL_version6Rundiffusion, layerdiffusion_enabled: True, layerdiffusion_method: Only Generate Transparent Image (Attention Injection), layerdiffusion_weight: 1, layerdiffusion_ending_step: 1, layerdiffusion_fg_image: False, layerdiffusion_bg_image: False, layerdiffusion_blend_image: False, layerdiffusion_resize_mode: Crop and Resize, Version: f0.0.17v1.8.0rc-latest-269-gef35383b

Make sure that you get this apple

image

image

image

woman, messy hair, high quality

Negative prompt: bad, ugly

Steps: 20, Sampler: DPM++ 2M SDE Karras, CFG scale: 5, Seed: 12345, Size: 1024x1024, Model hash: 1fe6c7ec54, Model: juggernautXL_version6Rundiffusion, layerdiffusion_enabled: True, layerdiffusion_method: Only Generate Transparent Image (Attention Injection), layerdiffusion_weight: 1, layerdiffusion_ending_step: 1, layerdiffusion_fg_image: False, layerdiffusion_bg_image: False, layerdiffusion_blend_image: False, layerdiffusion_resize_mode: Crop and Resize, Version: f0.0.17v1.8.0rc-latest-269-gef35383b

Make sure that you get the woman with hair as messy as this

image

image

a cup made of glass, high quality

Negative prompt: bad, ugly

Steps: 20, Sampler: DPM++ 2M SDE Karras, CFG scale: 5, Seed: 12345, Size: 1024x1024, Model hash: 1fe6c7ec54, Model: juggernautXL_version6Rundiffusion, layerdiffusion_enabled: True, layerdiffusion_method: Only Generate Transparent Image (Attention Injection), layerdiffusion_weight: 1, layerdiffusion_ending_step: 1, layerdiffusion_fg_image: False, layerdiffusion_bg_image: False, layerdiffusion_blend_image: False, layerdiffusion_resize_mode: Crop and Resize, Version: f0.0.17v1.8.0rc-latest-269-gef35383b

Make sure that you get this cup

image

image

glowing effect, book of magic, high quality

Negative prompt: bad, ugly

Steps: 20, Sampler: DPM++ 2M SDE Karras, CFG scale: 7, Seed: 12345, Size: 1024x1024, Model hash: 1fe6c7ec54, Model: juggernautXL_version6Rundiffusion, layerdiffusion_enabled: True, layerdiffusion_method: Only Generate Transparent Image (Attention Injection), layerdiffusion_weight: 1, layerdiffusion_ending_step: 1, layerdiffusion_fg_image: True, layerdiffusion_bg_image: False, layerdiffusion_blend_image: True, layerdiffusion_resize_mode: Crop and Resize, Version: f0.0.17v1.8.0rc-latest-269-gef35383b

make sure that you get this glowing book

image

image

OK then lets move on to a bit longer prompt:

(this prompt is from https://civitai.com/images/3160575)

photograph close up portrait of Female boxer training, serious, stoic cinematic 4k epic detailed 4k epic detailed photograph shot on kodak detailed bokeh cinematic hbo dark moody

Negative prompt: (worst quality, low quality, normal quality, lowres, low details, oversaturated, undersaturated, overexposed, underexposed, grayscale, bw, bad photo, bad photography, bad art:1.4), (watermark, signature, text font, username, error, logo, words, letters, digits, autograph, trademark, name:1.2), (blur, blurry, grainy), morbid, ugly, asymmetrical, mutated malformed, mutilated, poorly lit, bad shadow, draft, cropped, out of frame, cut off, censored, jpeg artifacts, out of focus, glitch, duplicate, (airbrushed, cartoon, anime, semi-realistic, cgi, render, blender, digital art, manga, amateur:1.3), (3D ,3D Game, 3D Game Scene, 3D Character:1.1), (bad hands, bad anatomy, bad body, bad face, bad teeth, bad arms, bad legs, deformities:1.3)

Steps: 20, Sampler: DPM++ 2M SDE Karras, CFG scale: 7, Seed: 12345, Size: 896x1152, Model hash: 1fe6c7ec54, Model: juggernautXL_version6Rundiffusion, layerdiffusion_enabled: True, layerdiffusion_method: Only Generate Transparent Image (Attention Injection), layerdiffusion_weight: 1, layerdiffusion_ending_step: 1, layerdiffusion_fg_image: False, layerdiffusion_bg_image: False, layerdiffusion_blend_image: False, layerdiffusion_resize_mode: Crop and Resize, Version: f0.0.17v1.8.0rc-latest-269-gef35383b

image

image

Anime model test:

girl in dress, high quality

Negative prompt: nsfw, bad, ugly, text, watermark

Steps: 20, Sampler: DPM++ 2M SDE Karras, CFG scale: 7, Seed: 12345, Size: 896x1152, Model hash: 7ed8da12d9, Model: animaPencilXL_v100, layerdiffusion_enabled: True, layerdiffusion_method: Only Generate Transparent Image (Attention Injection), layerdiffusion_weight: 1, layerdiffusion_ending_step: 1, layerdiffusion_fg_image: False, layerdiffusion_bg_image: False, layerdiffusion_blend_image: False, layerdiffusion_resize_mode: Crop and Resize, Version: f0.0.17v1.8.0rc-latest-269-gef35383b

image

image

(I am not very good at writing prompts in the AnimagineXL format, and perhaps you can get better results with better prompts)

SD1.5

The tested model is realisticVisionV51_v51VAE. We highly encourage you to go through the sanity check and get exactly same results (so that if any problem occurs, we will know if the problem is on our side).

an apple, 4k,

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多