Selective_Context

Selective_Context

高效压缩上下文技术实现大语言模型处理能力倍增

Selective Context是一种创新上下文压缩技术,能使大语言模型处理内容量提升一倍。该技术利用基础语言模型计算词句自信息,评估信息量,实现长文档和长对话的高效处理。项目提供完整代码实现、数据集和多项实验评估,已获EMNLP 2023会议认可。此上下文压缩技术适用于需要处理大量文本数据的场景,如智能客服、文档分析等。用户可通过pip安装,便捷集成到现有大语言模型项目中,显著提升处理效率。

Selective ContextLLM上下文压缩效率提升NLP任务Github开源项目
<p align="center"> <img src="https://github.com/liyucheng09/Selective_Context/blob/main/results/sc.png" alt="Logo of Selective Context" width="auto" height="150" /> </p>

Selective Context for LLMs

Selective Context compresses your prompt and context to allows LLMs (such as ChatGPT) to process 2x more content. It is especially useful in dealing with long documents and maintaining long conversations without compromising their performance on various tasks!

This repository contains the code and data for the paper: Compressing Context to Enhance Inference Efficiency of Large Language Models.

Updates!!

  • Oct 9 2023: This work has been accepted for the main proceedings of EMNLP 2023 :partying_face:. The paper link above is the latest conference version. If you are looking for the previous arxiv version of the paper: :point_right: Unlocking Context Constraints of LLMs.

  • May 6 2023: Try our demo on Huggingface Space.

Key Features

  • Efficient Context Management: Selective Context maximizes the utility of fixed context length in LLMs, allowing them to process long documents and extended conversations more efficiently.
  • Informativeness Evaluation: Our method employs a base language model to compute self-information for lexical units (sentences, phrases, or tokens) in a context and use it to evaluate their informativeness.
  • Extensive Evaluation: We provide extensive evaluations of Selective Context on three data sources (arxiv papers, BBC news articles, and conversation transcripts) and four different NLP tasks (summarization, question answering, original context reconstruction, and conversation).

Getting Started

To get started, follow these steps:

  1. Install selective-context via Pypi:

    pip install selective-context
    python -m spacy download en_core_web_sm
    

    If you are processing Chinese, run python -m spacy download zh_core_web_sm as well.

  2. Import SelectiveContext:

    from selective_context import SelectiveContext
    
  3. Compress your prompt and context. The context contains the compressed context:

    sc = SelectiveContext(model_type='gpt2', lang='en')
    context, reduced_content = sc(text)
    
  4. You can also adjust the reduce ratio:

    context, reduced_content = sc(text, reduce_ratio = 0.5)
    
  5. If you prefer to try with web interface, try our streamlit app:

    streamlit run app/app.py
    

    Or directly visit our Space on Hugging Face Hub.

Code Structure

  • selective_context.py: A demo for performing context reduction using Selective Context.
  • context_manager.py: The main module for managing context and implementing the Selective Context algorithm.
  • main.py: The main script for running experiments and evaluating the effectiveness of Selective Context.
  • qa_manager.py: A helper module for managing question answering tasks during the experiments.

Experiments

To reproduce the experiments from the paper:

  1. First, you download the datasets required in the experiments:
wget https://github.com/liyucheng09/Selective_Context/releases/download/v0.1.0rc1/datasets_dumps.zip
unzip datasets_dumps.zip
  1. You run:
python main.py datasets_dumps/arxiv datasets_dumps/news datasets_dump/conversation <output_path_to_save_results> <num_articles> <HF_model_name_or_path>

Dataset in the paper

The dataset used in the paper can be found at:

The datasets are created by ourselves so if you need citation just use the citation of this tool.

If you have trouble accessing Huggingface Hub, download the data via:

wget https://github.com/liyucheng09/Selective_Context/releases/download/v0.1.0rc1/data_dumps.zip

Citation

If you find this repository helpful or use our method in your research, please consider citing our paper:

@misc{li2023compressing,
      title={Compressing Context to Enhance Inference Efficiency of Large Language Models}, 
      author={Yucheng Li and Bo Dong and Chenghua Lin and Frank Guerin},
      year={2023},
      eprint={2310.06201},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

The previous version:

@misc{li2023unlocking,
      title={Unlocking Context Constraints of LLMs: Enhancing Context Efficiency of LLMs with Self-Information-Based Content Filtering}, 
      author={Yucheng Li},
      year={2023},
      eprint={2304.12102},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

License

This project is licensed under the MIT License.

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多