Lantern is an open-source PostgreSQL database extension to store vector data, generate embeddings, and handle vector search operations.
It provides a new index type for vector columns called lantern_hnsw which speeds up ORDER BY ... LIMIT queries.
Lantern builds and uses usearch, a single-header state-of-the-art HNSW implementation.
If you don’t have PostgreSQL already, use Lantern with Docker to get started quickly:
docker run --pull=always --rm -p 5432:5432 -e "POSTGRES_USER=$USER" -e "POSTGRES_PASSWORD=postgres" -v ./lantern_data:/var/lib/postgresql/data lanterndata/lantern:latest-pg15
Then, you can connect to the database via postgresql://$USER:postgres@localhost/postgres.
To install Lantern using homebrew:
brew tap lanterndata/lantern
brew install lantern && lantern_install
You can also install Lantern on top of PostgreSQL from our precompiled binaries via a single make install.
Alternatively, you can use Lantern in one click using Replit.
Prerequisites:
cmake version: >=3.3
gcc && g++ version: >=11 when building portable binaries, >= 12 when building on new hardware or with CPU-specific vectorization
PostgreSQL 11, 12, 13, 14, 15 or 16
Corresponding development package for PostgreSQL (postgresql-server-dev-$version)
To build Lantern on new hardware or with CPU-specific vectorization:
git clone --recursive https://github.com/lanterndata/lantern.git
cd lantern
mkdir build
cd build
cmake -DMARCH_NATIVE=ON ..
make install
To build portable Lantern binaries:
git clone --recursive https://github.com/lanterndata/lantern.git
cd lantern
mkdir build
cd build
cmake -DMARCH_NATIVE=OFF ..
make install
Lantern retains the standard PostgreSQL interface, so it is compatible with all of your favorite tools in the PostgreSQL ecosystem.
First, enable Lantern in SQL (e.g. via psql shell)
CREATE EXTENSION lantern;
Note: After running the above, lantern extension is only available on the current postgres DATABASE (single postgres instance may have multiple such DATABASES). When connecting to a different DATABASE, make sure to run the above command for the new one as well. For example:
CREATE DATABASE newdb; \c newdb CREATE EXTENSION lantern;
Create a table with a vector column and add your data
CREATE TABLE small_world (id integer, vector real[3]); INSERT INTO small_world (id, vector) VALUES (0, '{0,0,0}'), (1, '{0,0,1}');
Create an hnsw index on the table via lantern_hnsw:
CREATE INDEX ON small_world USING lantern_hnsw (vector);
Customize lantern_hnsw index parameters depending on your vector data, such as the distance function (e.g., dist_l2sq_ops), index construction parameters, and index search parameters.
CREATE INDEX ON small_world USING lantern_hnsw (vector dist_l2sq_ops) WITH (M=2, ef_construction=10, ef=4, dim=3);
Start querying data
SET enable_seqscan = false; SELECT id, l2sq_dist(vector, ARRAY[0,0,0]) AS dist FROM small_world ORDER BY vector <-> ARRAY[0,0,0] LIMIT 1;
Lantern supports several distance functions in the index and it has 2 modes for operators:
lantern.pgvector_compat=TRUE (default)
In this mode there are 3 operators available <-> (l2sq), <=> (cosine), <+> (hamming).
Note that in this mode, you need to use right operator in order to trigger an index scan.
lantern.pgvector_compat=FALSE
In this mode you only need to specify the distance function used for a column at index creation time. Lantern will automatically infer the distance function to use for search so you always use <?> operator in search queries.
Note that in this mode, the operator <?> is intended exclusively for use with index lookups. If you expect to not use the index in a query, use the distance function directly (e.g. l2sq_dist(v1, v2))
To switch between modes set
lantern.pgvector_compatvariable toTRUEorFALSE.
There are four defined operator classes that can be employed during index creation:
dist_l2sq_ops: Default for the type real[]dist_vec_l2sq_ops: Default for the type vectordist_cos_ops: Applicable to the type real[]dist_vec_cos_ops: Applicable to the type vectordist_hamming_ops: Applicable to the type integer[]The M, ef, and ef_construction parameters control the performance of the HNSW algorithm for your use case.
M and ef_construction speed up index creation at the cost of recall.M and ef improve search speed and result in fewer shared buffer hits at the cost of recall. Tuning these parameters will require experimentation for your specific use case.git pull && git submodule update --recursiveImportant takeaways:
CREATE INDEX time, SELECT throughput, and SELECT latency.

免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格, 同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号