lantern

lantern

PostgreSQL向量数据管理和搜索扩展

Lantern是一个PostgreSQL数据库扩展,专门用于向量数据管理和搜索。它引入了lantern_hnsw索引类型来加速向量查询,支持多种距离函数,并提供并行索引创建和外部索引生成等功能。Lantern与pgvector兼容,性能表现出色,并提供多种辅助函数以优化工作流程。

LanternPostgreSQL向量搜索数据库扩展HNSW索引Github开源项目

💡 Lantern

build test codecov Run on Replit

Lantern is an open-source PostgreSQL database extension to store vector data, generate embeddings, and handle vector search operations.

It provides a new index type for vector columns called lantern_hnsw which speeds up ORDER BY ... LIMIT queries.

Lantern builds and uses usearch, a single-header state-of-the-art HNSW implementation.

🔧 Quick Install

If you don’t have PostgreSQL already, use Lantern with Docker to get started quickly:

docker run --pull=always --rm -p 5432:5432 -e "POSTGRES_USER=$USER" -e "POSTGRES_PASSWORD=postgres" -v ./lantern_data:/var/lib/postgresql/data lanterndata/lantern:latest-pg15

Then, you can connect to the database via postgresql://$USER:postgres@localhost/postgres.

To install Lantern using homebrew:

brew tap lanterndata/lantern
brew install lantern && lantern_install

You can also install Lantern on top of PostgreSQL from our precompiled binaries via a single make install.

Alternatively, you can use Lantern in one click using Replit.

🔧 Build Lantern from source code on top of your existing PostgreSQL

Prerequisites:

cmake version: >=3.3
gcc && g++ version: >=11 when building portable binaries, >= 12 when building on new hardware or with CPU-specific vectorization
PostgreSQL 11, 12, 13, 14, 15 or 16
Corresponding development package for PostgreSQL (postgresql-server-dev-$version)

To build Lantern on new hardware or with CPU-specific vectorization:

git clone --recursive https://github.com/lanterndata/lantern.git
cd lantern
mkdir build
cd build
cmake -DMARCH_NATIVE=ON ..
make install

To build portable Lantern binaries:

git clone --recursive https://github.com/lanterndata/lantern.git
cd lantern
mkdir build
cd build
cmake -DMARCH_NATIVE=OFF ..
make install

📖 How to use Lantern

Lantern retains the standard PostgreSQL interface, so it is compatible with all of your favorite tools in the PostgreSQL ecosystem.

First, enable Lantern in SQL (e.g. via psql shell)

CREATE EXTENSION lantern;

Note: After running the above, lantern extension is only available on the current postgres DATABASE (single postgres instance may have multiple such DATABASES). When connecting to a different DATABASE, make sure to run the above command for the new one as well. For example:

CREATE DATABASE newdb; \c newdb CREATE EXTENSION lantern;

Create a table with a vector column and add your data

CREATE TABLE small_world (id integer, vector real[3]); INSERT INTO small_world (id, vector) VALUES (0, '{0,0,0}'), (1, '{0,0,1}');

Create an hnsw index on the table via lantern_hnsw:

CREATE INDEX ON small_world USING lantern_hnsw (vector);

Customize lantern_hnsw index parameters depending on your vector data, such as the distance function (e.g., dist_l2sq_ops), index construction parameters, and index search parameters.

CREATE INDEX ON small_world USING lantern_hnsw (vector dist_l2sq_ops) WITH (M=2, ef_construction=10, ef=4, dim=3);

Start querying data

SET enable_seqscan = false; SELECT id, l2sq_dist(vector, ARRAY[0,0,0]) AS dist FROM small_world ORDER BY vector <-> ARRAY[0,0,0] LIMIT 1;

A note on operators and operator classes

Lantern supports several distance functions in the index and it has 2 modes for operators:

  1. lantern.pgvector_compat=TRUE (default) In this mode there are 3 operators available <-> (l2sq), <=> (cosine), <+> (hamming).

    Note that in this mode, you need to use right operator in order to trigger an index scan.

  2. lantern.pgvector_compat=FALSE In this mode you only need to specify the distance function used for a column at index creation time. Lantern will automatically infer the distance function to use for search so you always use <?> operator in search queries.

    Note that in this mode, the operator <?> is intended exclusively for use with index lookups. If you expect to not use the index in a query, use the distance function directly (e.g. l2sq_dist(v1, v2))

To switch between modes set lantern.pgvector_compat variable to TRUE or FALSE.

There are four defined operator classes that can be employed during index creation:

  • dist_l2sq_ops: Default for the type real[]
  • dist_vec_l2sq_ops: Default for the type vector
  • dist_cos_ops: Applicable to the type real[]
  • dist_vec_cos_ops: Applicable to the type vector
  • dist_hamming_ops: Applicable to the type integer[]

Index Construction Parameters

The M, ef, and ef_construction parameters control the performance of the HNSW algorithm for your use case.

  • In general, lower M and ef_construction speed up index creation at the cost of recall.
  • Lower M and ef improve search speed and result in fewer shared buffer hits at the cost of recall. Tuning these parameters will require experimentation for your specific use case.

Miscellaneous

  • If you have previously cloned Lantern and would like to update run git pull && git submodule update --recursive

⭐️ Features

  • Embedding generation for popular use cases (CLIP model, Hugging Face models, custom model)
  • Interoperability with pgvector's data type, so anyone using pgvector can switch to Lantern
  • Parallel index creation via an external indexer
  • Ability to generate the index graph outside of the database server
  • Support for creating the index outside of the database and inside another instance allows you to create an index without interrupting database workflows.
  • See all of our helper functions to better enable your workflows

🏎️ Performance

Important takeaways:

  • There's three key metrics we track. CREATE INDEX time, SELECT throughput, and SELECT latency.
  • We match or outperform pgvector and pg_embedding (Neon) on all of these metrics.
  • We plan to continue to make performance improvements to ensure we are the best performing database.
<p> <img alt="Lantern throughput" src="https://storage.googleapis.com/lantern-blog/1/throughput.png" width="400" style="float: left;" /> <img alt="Lantern latency" src="https://storage.googleapis.com/lantern-blog/1/latency.png" width="400" style="float: left;" /> <img alt="Lantern index creation" src="https://storage.googleapis.com/lantern-blog/1/create.png" width="400" style="float: left;" /> </p>

🗺️ Roadmap

  • Cloud-hosted version of Lantern - Sign up here
  • Hardware-accelerated distance metrics, tailored for your CPU, enabling faster queries
  • Templates and guides for building applications for different industries
  • More tools for generating embeddings (support for third party model API’s, more local models)
  • Support for version control and A/B test embeddings
  • Autotuned index type that will choose appropriate creation parameters
  • Support for 1 byte and 2 byte vector elements, and up to 8000 dimensional vectors (PR #19)
  • Request a feature at support@lantern.dev

📚 Resources

  • GitHub issues: report bugs or issues with Lantern
  • Need support? Contact support@lantern.dev. We are happy to troubleshoot issues and advise on how to use Lantern for your use case
  • We welcome community contributions! Feel free to open an issue or a PR. If you contact support@lantern.dev, we can find an open issue or project that fits you

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多