Lantern is an open-source PostgreSQL database extension to store vector data, generate embeddings, and handle vector search operations.
It provides a new index type for vector columns called lantern_hnsw
which speeds up ORDER BY ... LIMIT
queries.
Lantern builds and uses usearch, a single-header state-of-the-art HNSW implementation.
If you don’t have PostgreSQL already, use Lantern with Docker to get started quickly:
docker run --pull=always --rm -p 5432:5432 -e "POSTGRES_USER=$USER" -e "POSTGRES_PASSWORD=postgres" -v ./lantern_data:/var/lib/postgresql/data lanterndata/lantern:latest-pg15
Then, you can connect to the database via postgresql://$USER:postgres@localhost/postgres
.
To install Lantern using homebrew
:
brew tap lanterndata/lantern
brew install lantern && lantern_install
You can also install Lantern on top of PostgreSQL from our precompiled binaries via a single make install
.
Alternatively, you can use Lantern in one click using Replit.
Prerequisites:
cmake version: >=3.3
gcc && g++ version: >=11 when building portable binaries, >= 12 when building on new hardware or with CPU-specific vectorization
PostgreSQL 11, 12, 13, 14, 15 or 16
Corresponding development package for PostgreSQL (postgresql-server-dev-$version)
To build Lantern on new hardware or with CPU-specific vectorization:
git clone --recursive https://github.com/lanterndata/lantern.git
cd lantern
mkdir build
cd build
cmake -DMARCH_NATIVE=ON ..
make install
To build portable Lantern binaries:
git clone --recursive https://github.com/lanterndata/lantern.git
cd lantern
mkdir build
cd build
cmake -DMARCH_NATIVE=OFF ..
make install
Lantern retains the standard PostgreSQL interface, so it is compatible with all of your favorite tools in the PostgreSQL ecosystem.
First, enable Lantern in SQL (e.g. via psql
shell)
CREATE EXTENSION lantern;
Note: After running the above, lantern extension is only available on the current postgres DATABASE (single postgres instance may have multiple such DATABASES). When connecting to a different DATABASE, make sure to run the above command for the new one as well. For example:
CREATE DATABASE newdb; \c newdb CREATE EXTENSION lantern;
Create a table with a vector column and add your data
CREATE TABLE small_world (id integer, vector real[3]); INSERT INTO small_world (id, vector) VALUES (0, '{0,0,0}'), (1, '{0,0,1}');
Create an hnsw index on the table via lantern_hnsw
:
CREATE INDEX ON small_world USING lantern_hnsw (vector);
Customize lantern_hnsw
index parameters depending on your vector data, such as the distance function (e.g., dist_l2sq_ops
), index construction parameters, and index search parameters.
CREATE INDEX ON small_world USING lantern_hnsw (vector dist_l2sq_ops) WITH (M=2, ef_construction=10, ef=4, dim=3);
Start querying data
SET enable_seqscan = false; SELECT id, l2sq_dist(vector, ARRAY[0,0,0]) AS dist FROM small_world ORDER BY vector <-> ARRAY[0,0,0] LIMIT 1;
Lantern supports several distance functions in the index and it has 2 modes for operators:
lantern.pgvector_compat=TRUE
(default)
In this mode there are 3 operators available <->
(l2sq), <=>
(cosine), <+>
(hamming).
Note that in this mode, you need to use right operator in order to trigger an index scan.
lantern.pgvector_compat=FALSE
In this mode you only need to specify the distance function used for a column at index creation time. Lantern will automatically infer the distance function to use for search so you always use <?>
operator in search queries.
Note that in this mode, the operator <?>
is intended exclusively for use with index lookups. If you expect to not use the index in a query, use the distance function directly (e.g. l2sq_dist(v1, v2)
)
To switch between modes set
lantern.pgvector_compat
variable toTRUE
orFALSE
.
There are four defined operator classes that can be employed during index creation:
dist_l2sq_ops
: Default for the type real[]
dist_vec_l2sq_ops
: Default for the type vector
dist_cos_ops
: Applicable to the type real[]
dist_vec_cos_ops
: Applicable to the type vector
dist_hamming_ops
: Applicable to the type integer[]
The M
, ef
, and ef_construction
parameters control the performance of the HNSW algorithm for your use case.
M
and ef_construction
speed up index creation at the cost of recall.M
and ef
improve search speed and result in fewer shared buffer hits at the cost of recall. Tuning these parameters will require experimentation for your specific use case.git pull && git submodule update --recursive
Important takeaways:
CREATE INDEX
time, SELECT
throughput, and SELECT
latency.AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号