
快速将ChatGPT功能整合至微信平台
该项目实现了ChatGPT功能与微信的无缝集成。基于Wechaty SDK和OpenAI API开发,支持连接GPT-4和GPT-3.5-turbo等多个AI模型。提供本地和云端两种部署方式,操作简便。支持自定义触发关键词、错误回复和模型参数,并可添加自定义任务处理器以扩展机器人功能。项目设置灵活,适用于各类聊天场景。
🤖️ Turn your WeChat into ChatGPT within only 2 steps! 🤖️
<p align="center"> <img src="doc/img/demo.png" alt="Group chat demo for @kx-Huang/ChatGPT-on-WeChat" /> </p>This project is implemented based on this amazing project that I contibuted before, with Wechaty SDK and OpenAI API, we achieve:
gpt-4o and gpt-3.5-turbo which powers ChatGPTRailwayYou can deploy in local or on cloud, whatever you want.
The deploy on cloud method is recommended.
openaiApiKey can be generated in the API Keys Page in your OpenAI accountopenaiOrganizationID is optional, which can be found in the Settings Page in your Open AI accountYou can copy the template config.yaml.example into a new file config.yaml, and paste the configurations:
openaiApiKey: "<your_openai_api_key>" openaiOrganizationID: "<your_organization_id>" chatgptTriggerKeyword: "<your_keyword>"
Or you can export the environment variables listed in .env.example to your system, which is a more encouraged method to keep your OpenAI API Key safe:
export OPENAI_API_KEY="sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX" export OPENAI_ORGANIZATION_KEY="org-XXXXXXXXXXXXXXX" export CHATGPT_TRIGGER_KEYWORD="Hi bot:"
Please note:
chatgptTriggerKeyword is the keyword which can trigger auto-reply:
@Name <keyword> will trigger auto-replychatgptTriggerKeyword can be empty string, which means:
docker build -t chatgpt-on-wechat .
docker run -v $(pwd)/config.yaml:/app/config.yaml chatgpt-on-wechat
You can also build with Docker Compose:
docker-compose up -d
docker-compose logs -f
Once you deploy the bot successfully, just follow the terminal or Logs in Docker container prompt carefully:
🤖 Enjoy your powerful chatbot! 🤖
Click the button below to fork this repo and deploy with Railway!
RailwayFill in the following blanks:

Please note:
Make sure the environment variables are set in RailWay instead of writing directly in config.yaml. It's really NOT recommended to implicitly write out your OpenAI API Key in public repo. Anyone with your key can get access to the OpenAI API services, and it's possbile for you to lose money if you pay for that.
RailwayThe deploy process is automatic. It may take a few minutes for the first time. As you see the Success, click the tab to see the details. (which is your secret WeChat console!)

Click Deply Logs and you will see everything is setting up, wait for a QR Code to pop up. Scan it as if you are login to your desktop WeChat, and click "Log in" on your mobile WeChat.

Finally, everything is good to go! You will see the logs when people sending you messagem, and whenever the chatbot is auto-triggered to reply.

🤖 Enjoy your powerful chatbot! 🤖
When the OpenAI API encounters some errors (e.g. over-crowded traffic, no authorization, ...), the chatbot will auto-reply the pre-configured message.
You can change it in src/chatgpt.js:
const chatgptErrorMessage = "🤖️:ChatGPT摆烂了,请稍后再试~";
OpenAI ModelsYou can change whatever OpenAI Models you like to handle task at different capability, time-consumption and expense trade-off. (e.g. model with better capability costs more time to respond)
Currently, the latest GPT-4o model is up and running!
Since the latest gpt-4 model is currently in a limited beta and only accessible to those who have been granted access, currently we use the gpt-3.5-turbo model as default. Of course, if you have the access to gpt-4 API, you can just change the model to gpt-4 without any other modification.
According to OpenAI doc,
GPT-4o (“o” for “omni”) is our most advanced model. It is multimodal (accepting text or image inputs and outputting text), and it has the same high intelligence as GPT-4 Turbo but is much more efficient—it generates text 2x faster and is 50% cheaper. Additionally, GPT-4o has the best vision and performance across non-English languages of any of our models.
GPT-3.5 models can understand and generate natural language or code. Our most capable and cost effective model in the GPT-3.5 family isgpt-3.5-turbowhich has been optimized for chat but works well for traditional completions tasks as well.
Also, for the same model, we can configure dozens of parameter (e.g. answer randomness, maximum word limit...). For example, for the temperature field:
Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
You can configure all of them in src/chatgpt.js:
chatgptModelConfig: object = { // this model field is required model: "gpt-4o", // add your ChatGPT model parameters below temperature: 0.8, // max_tokens: 2000, };
For more details, please refer to OpenAI Models Doc.
You can change whatever features you like to handle different types of tasks. (e.g. complete text, edit text, generate code...)
Currently, we use createChatCompletion() powered by gpt-4o model, which:
take a series of messages as input, and return a model-generated message as output.
You can configure in src/chatgpt.js:
const response = await this.openaiApiInstance.createChatCompletion({ ...this.chatgptModelConfig, messages: inputMessages, });
For more details, please refer to OpenAI API Doc.
You can add your own task handlers to expand the ability of this chatbot!
In src/chatgpt.ts ChatGPTBot.onCustimzedTask(), write your own task handler:
// e.g. if a message starts with "Hello", the bot sends "World!" if (message.text().startsWith("Hello")) { await message.say("World!"); return; }
Error Log:
uncaughtException AssertionError [ERR_ASSERTION]: 1 == 0 at Object.equal (/app/node_modules/wechat4u/src/util/global.js:53:14) at /app/node_modules/wechat4u/src/core.js:195:16 at processTicksAndRejections (node:internal/process/task_queues:96:5) { code: 2, details: 'AssertionError [ERR_ASSERTION]: 1 == 0\n' + ' at Object.equal (/app/node_modules/wechat4u/src/util/global.js:53:14)\n' + ' at /app/node_modules/wechat4u/src/core.js:195:16\n' + ' at processTicksAndRejections (node:internal/process/task_queues:96:5)' }
Solution:
<keyword>@Name <keyword>You are more than welcome to raise some issues, fork this repo, commit your code and submit pull request. And after code review, we can merge your contribution. I'm really looking forward to develop more interesting features!
Also, there're something in the to-do list for future enhancement:
LangChain):DALL·E model for AI image creation. Triggered by customized keyword (e.g. Hi bot, draw...)Whisper model for speech recognition. Triggered by voice messages and do transcription or translationGreat thanks to:


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工 作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文 质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号