R
and ggplot2
"If you laugh at a joke, what difference does it make if subsequently you are told that the joke was created by an algorithm?" - Marcus du Sautoy, The Creative Code
aRtsy
aims to make generative art accessible to the general public in a straightforward and standardized manner. The package provides algorithms for creating artworks that incorporate some form of randomness and are dependent on the set seed
. Each algorithm is implemented in a separate function with its own set of parameters that can be tweaked.
Good luck hunting for some good seed
's!
Every 24 hours this repository randomly generates and tweets an artwork from the aRtsy
library. The full collection of daily artworks is available on the twitter feed and the mastodon feed. This is today's artwork:
The most recently released version of aRtsy
can be downloaded from CRAN by running the following command in R:
install.packages("aRtsy")
Alternatively, you can download the development version from GitHub using:
devtools::install_github("koenderks/aRtsy")
After installation, the aRtsy
package can be loaded with:
library(aRtsy)
Note: Render times in RStudio can be quite long for some artworks. It is therefore recommended that you save the artwork to a file (e.g., .png
or .jpg
) before viewing it. You can save the artwork in an appropriate size and quality using the saveCanvas()
function.
artwork <- canvas_strokes(colors = c("black", "white")) saveCanvas(artwork, filename = "myArtwork.png")
The Iterative collection
canvas_ant()
canvas_chladni()
canvas_cobweb()
canvas_collatz()
canvas_flame()
canvas_flow()
canvas_lissajous()
canvas_maze()
canvas_mesh()
canvas_petri()
canvas_phyllotaxis()
canvas_planet()
canvas_recaman()
canvas_smoke()
canvas_splits()
canvas_stripes()
canvas_strokes()
canvas_swirls()
canvas_tiles()
canvas_turmite()
canvas_watercolors()
The Geometric collection
canvas_diamonds()
canvas_function()
canvas_polylines()
canvas_ribbons()
canvas_segments()
canvas_squares()
The Supervised collection
The Static collection
The Iterative collection implements algorithms whose state depend on the previous state. These algorithms mostly use a grid based canvas to draw on. On this grid, each point represents a pixel of the final image. By assigning a color to these points according to certain rules, one can create the images in this collection.
According to Wikipedia, Langton's ant is a turmite with a very specific set of rules. In particular, after choosing a starting position the algorithm involves repeating the following three rules:
You can use the canvas_ant()
function to make your own artwork using this algorithm.
set.seed(1) canvas_ant(colors = colorPalette("house")) # see ?canvas_ant for more input parameters of this function
This function draws Chladni figures on the canvas. It works by generating one or multiple sine waves on a square matrix. You can provide the waves to be added yourself. After generating the waves it is possible to warp them using a domain warping technique. The angles and distances for the warp can be set manually or according to a type of noise.
<p align="center"> <img src='https://github.com/koenderks/aRtsy/raw/development/png/chladnis/2021-11-12.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/chladnis/2021-11-13.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/chladnis/2021-11-14.png' width='30%'> </p>You can use the canvas_chladni()
function to make your own artwork using this algorithm.
set.seed(1) canvas_chladni(colors = colorPalette("tuscany1")) # see ?canvas_chladni for more input parameters of this function
This function draws a lines in a structure that resemble cobwebs. The algorithm creates many Fibonacci spirals shifted by random noise from a normal distribution.
<p align="center"> <img src='https://github.com/koenderks/aRtsy/raw/development/png/cobwebs/2021-11-05.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/cobwebs/2021-11-07.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/cobwebs/2021-11-06.png' width='30%'> </p>You can use the canvas_cobweb()
function to make your own artwork using this algorithm.
set.seed(1) canvas_cobweb(colors = colorPalette("tuscany1")) # see ?canvas_cobweb for more input parameters of this function
The Collatz conjecture is also known as the 3x+1
equation. The algorithm draws lines according to a simple rule set:
By visualizing the sequence for each number, overlaying sequences that are the same, and bending the edges differently for even and odd numbers in the sequence, organic looking structures can occur.
<p align="center"> <img src='https://github.com/koenderks/aRtsy/raw/development/png/collatzs/2021-08-09.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/collatzs/2021-08-08.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/collatzs/2021-08-10.png' width='30%'> </p>You can use the canvas_collatz()
function to make your own artwork using this algorithm.
set.seed(1) canvas_collatz(colors = colorPalette("tuscany3")) # see ?canvas_collatz for more input parameters of this function
This function implements the Fractal Flame algorithm described in this article by Scott Draves and Erik Reckase. It iterates a set of randomly determined function systems following one or multiple specific variations to determine a set of points. You can specify which variations from the article to include in the flame, what type of symmetry to include, whether to blend the variations using weights or to pick a single variation for each iteration, whether to apply a post transformation and whether to apply a final transformation (optionally including an additional posttransformation). The final image can either be based on a the origin of the attractors or on the log density of the hit count of each pixel (for a more rigid look).
<p align="center"> <img src='https://github.com/koenderks/aRtsy/raw/development/png/flames/2022-10-06.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/flames/2022-10-05.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/flames/2022-10-04.png' width='30%'> </p>You can use the canvas_flame()
function to make your own artwork using this algorithm.
set.seed(2) canvas_flame(colors = colorPalette("dark2")) # see ?canvas_flame for more input parameters of this function
This artwork implements a version of the algorithm described in the blog post Flow Fields by Tyler Hobbs. It works by creating a grid of angles and determining how certain points will flow through this field. The angles in the field can be set manually or according to the predictions of a supervised learning method trained on randomly generated data.
<p align="center"> <img src='https://github.com/koenderks/aRtsy/raw/development/png/flows/2021-09-24.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/flows/2021-09-23.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/flows/2021-09-22.png' width='30%'> </p>You can use the canvas_flow()
function to make your own artwork using this algorithm.
set.seed(1) canvas_flow(colors = colorPalette("dark2")) # see ?canvas_flow for more input parameters of this function
This function draws Lissajous curves and subsequently connects the points on the curve to its k-nearest neighbors. The function is inspired by the Lissajous curves implemented in Marcus Volz's mathart package but adds colors into the mix.
<p align="center"> <img src='https://github.com/koenderks/aRtsy/raw/development/png/lissajous/2023-08-17.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/lissajous/2023-08-18.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/lissajous/2023-08-19.png' width='30%'> </p>You can use the canvas_lissajous()
function to make your own artwork using this algorithm.
set.seed(1) canvas_lissajous(colors = colorPalette("blossom")) # see ?canvas_lissajous for more input parameters of this function
This artwork creates mazes. The mazes are created using a random walk algorithm (described in the mazegenerator repository). The mazes can also be displayed with polar coordinates, creating some pretty cool effects.
<p align="center"> <img src='https://github.com/koenderks/aRtsy/raw/development/png/mazes/2021-10-03.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/mazes/2021-10-02.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/mazes/2021-10-04.png' width='30%'> </p>You can use the canvas_maze()
function to make your own artwork using this algorithm.
set.seed(1) canvas_maze(color = "#fafafa") # see ?canvas_maze for more input parameters of this function
This artwork creates one or more rotating circular morphing meshes on the canvas. The idea behind this artwork is described in this blogpost by Dan Gries with the simple words: "deformed circles move across the canvas, and trace out these shapes". The circle has a three random components at each time step: the center, the radius, and the increase in the radius.
<p align="center"> <img src='https://github.com/koenderks/aRtsy/raw/development/png/meshes/2022-10-03.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/meshes/2022-10-02.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/meshes/2022-10-04.png' width='30%'> </p>You can use the canvas_mesh()
function to make your own artwork using this algorithm.
set.seed(1) canvas_mesh(color = "#000000") # see ?canvas_mesh for more input parameters of this function
This artwork uses a space colonization algorithm (excellently described in this blogpost by Jason Webb) to draw Petri dish colonies. If you add a hole in the middle of the Petri dish, the colony grows around the hole.
<p align="center"> <img src='https://github.com/koenderks/aRtsy/raw/development/png/petris/2022-04-04.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/petris/2022-04-06.png' width='30%'> <img src='https://github.com/koenderks/aRtsy/raw/development/png/petris/2022-04-05.png' width='30%'> </p>You can use the canvas_petri()
function to make your own artwork using this algorithm.
set.seed(1) canvas_petri(colors = colorPalette("sooph")) # see ?canvas_petri for
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号