nncase

nncase

神经网络编译器 优化AI加速器性能

nncase是专为AI加速器设计的神经网络编译器,支持多输入输出和多分支结构。它采用静态内存分配,提供算子融合优化,支持浮点和uint8量化推理,以及基于校准数据集的后量化。nncase支持零拷贝加载平面模型,适用于K230、K510和K210等芯片。它提供丰富的操作符支持、使用指南和示例,以及完整的生态系统资源,有助于高效部署AI模型。

nncaseAI加速器神经网络编译器K230模型量化Github开源项目
<div align="center"> <img src="docs/logo.png" width="400" alt="nncase" /> </div>

GitHub repository Gitee repository GitHub release

切换中文

nncase is a neural network compiler for AI accelerators.

Telegram: nncase community Technical Discussion QQ Group: 790699378 . Answer: 人工智能


K230

Install

  • Linux:

    pip install nncase nncase-kpu
  • Windows:

    1. pip install nncase 2. Download `nncase_kpu-2.x.x-py2.py3-none-win_amd64.whl` in below link. 3. pip install nncase_kpu-2.x.x-py2.py3-none-win_amd64.whl

All version of nncase and nncase-kpu in Release.

Supported operators

benchmark test

<table> <tr> <th>kind</th> <th> model </th><th> shape </th><th> quant_type(If/W) </th><th> nncase_fps </th><th> tflite_onnx_result </th><th> accuracy </th><th> info </th></tr> <tr> <td rowspan='3'>Image Classification</td> <td>mobilenetv2 </td><td> [1,224,224,3] </td><td> u8/u8 </td><td> 600.24 </td><td> top-1 = 71.3%<br/>top-5 = 90.1% </td><td> top-1 = 71.1%<br/>top-5 = 90.0% </td><td> dataset(ImageNet 2012, 50000 images)<br/> tflite </td></tr> <tr><td>resnet50V2 </td><td> [1,3,224,224] </td><td> u8/u8 </td><td> 86.17 </td><td> top-1 = 75.44%<br/>top-5 = 92.56% </td><td> top-1 = 75.11% <br/> top-5 = 92.36% </td><td> dataset(ImageNet 2012, 50000 images)<br/> onnx</td></tr> <tr><td>yolov8s_cls </td><td> [1,3,224,224] </td><td> u8/u8 </td><td> 130.497 </td><td> top-1 = 72.2%<br/>top-5 = 90.9% </td><td> top-1 = 72.2%<br/>top-5 = 90.8% </td><td> dataset(ImageNet 2012, 50000 images)<br/> yolov8s_cls(v8.0.207)</td></tr> <tr> <td rowspan='2'>Object Detection</td> <td>yolov5s_det </td><td> [1,3,640,640] </td><td> u8/u8 </td><td> 23.645 </td><td> bbox<br/>mAP50-90 = 0.374<br/>mAP50 = 0.567 </td><td> bbox<br/>mAP50-90 = 0.369<br/>mAP50 = 0.566</td><td>dataset(coco val2017, 5000 images)<br/>yolov5s_det(v7.0 tag, rect=False, conf=0.001, iou=0.65)</td></tr> <tr><td>yolov8s_det </td><td> [1,3,640,640] </td><td> u8/u8 </td><td> 9.373 </td><td> bbox<br/>mAP50-90 = 0.446<br/>mAP50 = 0.612<br/>mAP75 = 0.484 </td><td> bbox<br/>mAP50-90 = 0.404<br/>mAP50 = 0.593<br/>mAP75 = 0.45</td><td>dataset(coco val2017, 5000 images)<br/>yolov8s_det(v8.0.207, rect = False)</td></tr> <tr> <td rowspan='1'>Image Segmentation</td> <td>yolov8s_seg </td><td> [1,3,640,640] </td><td> u8/u8 </td><td> 7.845 </td><td> bbox<br/>mAP50-90 = 0.444<br/>mAP50 = 0.606<br/>mAP75 = 0.484<br/>segm<br/>mAP50-90 = 0.371<br/>mAP50 = 0.578<br/>mAP75 = 0.396 </td><td> bbox<br/>mAP50-90 = 0.444<br/>mAP50 = 0.606<br/>mAP75 = 0.484<br/>segm<br/>mAP50-90 = 0.371<br/>mAP50 = 0.579<br/>mAP75 = 0.397</td><td> dataset(coco val2017, 5000 images)<br/>yolov8s_seg(v8.0.207, rect = False, conf_thres = 0.0008)</td></tr> <tr> <td rowspan='3'>Pose Estimation</td> <td>yolov8n_pose_320 </td><td> [1,3,320,320] </td><td> u8/u8 </td><td> 36.066 </td><td> bbox<br/>mAP50-90 = 0.6<br/>mAP50 = 0.843<br/>mAP75 = 0.654<br/>keypoints<br/>mAP50-90 = 0.358<br/>mAP50 = 0.646<br/>mAP75 = 0.353 </td><td> bbox<br/>mAP50-90 = 0.6<br/>mAP50 = 0.841<br/>mAP75 = 0.656<br/>keypoints<br/>mAP50-90 = 0.359<br/>mAP50 = 0.648<br/>mAP75 = 0.357 </td><td> dataset(coco val2017, 2346 images)<br/>yolov8n_pose(v8.0.207, rect = False)</td></tr> <tr><td>yolov8n_pose_640 </td><td> [1,3,640,640] </td><td> u8/u8 </td><td> 10.88 </td><td> bbox<br/>mAP50-90 = 0.694<br/>mAP50 = 0.909<br/>mAP75 = 0.776<br/>keypoints<br/>mAP50-90 = 0.509<br/>mAP50 = 0.798<br/>mAP75 = 0.544 </td><td> bbox<br/>mAP50-90 = 0.694<br/>mAP50 = 0.909<br/>mAP75 = 0.777<br/>keypoints<br/>mAP50-90 = 0.508<br/>mAP50 = 0.798<br/>mAP75 = 0.54 </td><td> dataset(coco val2017, 2346 images)<br/>yolov8n_pose(v8.0.207, rect = False)</td></tr> <tr><td>yolov8s_pose </td><td> [1,3,640,640] </td><td> u8/u8 </td><td> 5.568 </td><td> bbox<br/>mAP50-90 = 0.733<br/>mAP50 = 0.925<br/>mAP75 = 0.818<br/>keypoints<br/>mAP50-90 = 0.605<br/>mAP50 = 0.857<br/>mAP75 = 0.666 </td><td> bbox<br/>mAP50-90 = 0.734<br/>mAP50 = 0.925<br/>mAP75 = 0.819<br/>keypoints<br/>mAP50-90 = 0.604<br/>mAP50 = 0.859<br/>mAP75 = 0.669</td><td> dataset(coco val2017, 2346 images)<br/>yolov8s_pose(v8.0.207, rect = False)</td></tr> </table>

Demo

eye gazespace_resizeface pose
<img src="https://github.com/kendryte/nncase_docs/blob/master/gif/eye_gaze_result.gif?raw=true" alt="gif"><img src="https://github.com/kendryte/nncase_docs/blob/master/gif/space_resize.gif?raw=true" alt="gif"><img src="https://github.com/kendryte/nncase_docs/blob/master/gif/face_pose_result.gif?raw=true">

K210/K510

Supported operators


Features

  • Supports multiple inputs and outputs and multi-branch structure
  • Static memory allocation, no heap memory acquired
  • Operators fusion and optimizations
  • Support float and quantized uint8 inference
  • Support post quantization from float model with calibration dataset
  • Flat model with zero copy loading

Architecture

<div align="center"> <img src="docs/imgs/arch.jpeg" alt="nncase arch" /> </div>

Build from source

It is recommended to install nncase directly through pip. At present, the source code related to k510 and K230 chips is not open source, so it is not possible to use nncase-K510 and nncase-kpu (K230) directly by compiling source code.

If there are operators in your model that nncase does not yet support, you can request them in the issue or implement them yourself and submit the PR. Later versions will be integrated, or contact us to provide a temporary version. Here are the steps to compile nncase.

git clone https://github.com/kendryte/nncase.git cd nncase mkdir build && cd build # Use Ninja cmake .. -G Ninja -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install ninja && ninja install # Use make cmake .. -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=./install make && make install

Resources

Canaan developer community

Canaan developer community contains all resources related to K210, K510, and K230.

  • 资料下载 --> Pre-compiled images available for the development boards corresponding to the three chips.
  • 文档 --> Documents corresponding to the three chips.
  • 模型库 --> Examples and code for industrial, security, educational and other scenarios that can be run on the K210 and K230.
  • 模型训练 --> The model training platform for K210 and K230 supports the training of various scenarios.

Bilibili

K210 related repo

K230 related repo

编辑推荐精选

扣��子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多