BirdNET-Analyzer

BirdNET-Analyzer

基于AI的鸟类声音识别和生物多样性监测系统

BirdNET-Analyzer是一个开源的人工智能系统,用于自动处理科学音频数据和鸟类识别。它可分析大量音频或单个文件,识别全球6000多种鸟类声音。由康奈尔大学鸟类学实验室开发,为研究人员提供便捷的声学分析工具,无需编程基础。支持多操作系统,配备图形界面,操作简单。该系统在生物多样性监测和鸟类研究领域具有广泛应用前景。

BirdNET鸟类识别声音分析人工智能生物声学Github开源项目

//*********************************************** //***************** SETTINGS ******************** //***********************************************

:doctype: book :use-link-attrs: :linkattrs:

// Github Icons ifdef::env-github[] :tip-caption: :bulb: :note-caption: :information_source: :important-caption: :heavy_exclamation_mark: :caution-caption: :fire: :warning-caption: :warning: endif::[]

// Table of Contents :toc: :toclevels: 2 :toc-title: :toc-placement!: :sectanchors:

// Numbered sections :sectnums: :sectnumlevels: 2

// Links :cc-by-nc-sa: http://creativecommons.org/licenses/by-nc-sa/4.0/

//************* END OF SETTINGS ****************** //************************************************

// Header ++++

<div align="center"> <h1>BirdNET-Analyzer</h1> <p>Automated scientific audio data processing and bird ID.</p> <p><img src="https://tuc.cloud/index.php/s/xwKqoCmRDKzBCDZ/download/logo_box_birdnet.png" width="500px" /></p> ++++

// Badges :license-badge: https://badgen.net/badge/License/CC-BY-NC-SA%204.0/green :os-badge: https://badgen.net/badge/OS/Linux%2C%20Windows%2C%20macOS/blue :species-badge: https://badgen.net/badge/Species/6512/blue :downloads-badge: https://www-user.tu-chemnitz.de/~johau/birdnet_total_downloads_badge.php :twitter-badge: https://img.shields.io/twitter/follow/BirdNET_App :reddit-badge: https://img.shields.io/reddit/subreddit-subscribers/BirdNET_Analyzer?style=social // Mail icon from FontAwesome :mail-badge: https://img.shields.io/badge/Mail us!-ccb--birdnet%40cornell.edu-yellow.svg?style=social&logo=

image:{license-badge}[CC BY-NC-SA 4.0, link={cc-by-nc-sa}] image:{os-badge}[Supported OS, link=""] image:{species-badge}[Number of species, link=""] image:{downloads-badge}[Downloads, link=""]

[.text-center] image:{mail-badge}[Email, link=mailto:ccb-birdnet@cornell.edu, height=25] image:https://img.shields.io/twitter/follow/BirdNET_App[Twitter Follow, link=https://twitter.com/BirdNET_App, height=25] image:{reddit-badge}[Subreddit subscribers, link="https://reddit.com/r/BirdNET_Analyzer", height=25]

++++

</div> ++++

[discrete] == Introduction

This repo contains BirdNET models and scripts for processing large amounts of audio data or single audio files. This is the most advanced version of BirdNET for acoustic analyses and we will keep this repository up-to-date with new models and improved interfaces to enable scientists with no CS background to run the analysis.

https://github.com/kahst/BirdNET-Analyzer/releases/download/v1.2.0/BirdNET-Analyzer-GUI-1.2.0-win.exe[*Click here to download the Windows installer*] and follow the https://github.com/kahst/BirdNET-Analyzer#setup-windows[setup instructions].

https://tuc.cloud/index.php/s/2TX59Qda2X92Ppr/download/BirdNET_GLOBAL_6K_V2.4_Model_Raven.zip[*Download the newest Raven model here*] and follow the https://github.com/kahst/BirdNET-Analyzer#setup-raven-pro[setup instructions].

Feel free to use BirdNET for your acoustic analyses and research. If you do, please cite as:


@article{kahl2021birdnet, title={BirdNET: A deep learning solution for avian diversity monitoring}, author={Kahl, Stefan and Wood, Connor M and Eibl, Maximilian and Klinck, Holger}, journal={Ecological Informatics}, volume={61}, pages={101236}, year={2021}, publisher={Elsevier} }

This work is licensed under a {cc-by-nc-sa}[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License].

[discrete] == About

Developed by the https://www.birds.cornell.edu/ccb/[K. Lisa Yang Center for Conservation Bioacoustics] at the https://www.birds.cornell.edu/home[Cornell Lab of Ornithology] in collaboration with https://www.tu-chemnitz.de/index.html.en[Chemnitz University of Technology].

Go to https://birdnet.cornell.edu to learn more about the project.

Want to use BirdNET to analyze a large dataset? Don't hesitate to contact us: ccb-birdnet@cornell.edu

Follow us on Twitter https://twitter.com/BirdNET_App[@BirdNET_App]

We also have a discussion forum on https://reddit.com/r/BirdNET_Analyzer[Reddit] if you have a general question or just want to chat.

Have a question, remark, or feature request? Please start a new issue thread to let us know. Feel free to submit a pull request.

[discrete] == Contents toc::[]

== Usage guide

This document provides instructions for downloading and installing the GUI, and conducting some of the most common types of analyses. Within the document, a link is provided to download example sound files that can be used for practice.

Download the PDF here: https://zenodo.org/records/8357176[BirdNET-Analyzer Usage Guide]

Watch our presentation on how to use BirdNET-Analyzer to train your own models: https://youtu.be/HuEZGIPeyq0[BirdNET - BioacousTalks at YouTube]

== Showroom

BirdNET powers a number of fantastic community projects dedicated to bird song identification, all of which use models from this repository. These are some highlights, make sure to check them out!

.Community projects [cols=",", options="header"] |=== | Project | Description

| image:https://tuc.cloud/index.php/s/cDqtQxo8yMRkNYP/download/logo_box_loggerhead.png[HaikuBox,300,link=https://haikubox.com] | HaikuBox + Once connected to your WiFi, Haikubox will listen for birds 24/7. When BirdNET finds a match between its thousands of labeled sounds and the birdsong in your yard, it identifies the bird species and shares a three-second audio clip to the Haikubox website and smartphone app.

Learn more at: https://haikubox.com[HaikuBox.com]

| image:https://tuc.cloud/index.php/s/WKCZoE9WSjimDoe/download/logo_box_birdnet-pi.png[BirdNET-PI,300,link=https://birdnetpi.com] | BirdNET-Pi + Built on the TFLite version of BirdNET, this project uses pre-built TFLite binaries for Raspberry Pi to run on-device sound analyses. It is able to recognize bird sounds from a USB sound card in realtime and share its data with the rest of the world.

Note: You can find the most up-to-date version of BirdNET-PI at https://github.com/Nachtzuster/BirdNET-Pi[github.com/Nachtzuster/BirdNET-Pi]

Learn more at: https://birdnetpi.com[BirdNETPi.com]

| image:https://tuc.cloud/index.php/s/jDtyG9W36WwKpbR/download/logo_box_birdweather.png[BirdWeather,300,link=https://app.birdweather.com] | BirdWeather + This site was built to be a living library of bird vocalizations. Using the BirdNET artificial neural network, BirdWeather is continuously listening to over 1,000 active stations around the world in real-time.

Learn more at: https://app.birdweather.com[BirdWeather.com]

| image:https://tuc.cloud/index.php/s/kqT7GXXzfDs3NyA/download/birdnetlib-logo.png[birdnetlib,300,link=https://joeweiss.github.io/birdnetlib/] | birdnetlib + A python api for BirdNET-Analyzer and BirdNET-Lite. birdnetlib provides a common interface for BirdNET-Analyzer and BirdNET-Lite.

Learn more at: https://joeweiss.github.io/birdnetlib/[github.io/birdnetlib]

| image:https://tuc.cloud/index.php/s/zpNkXJq7je3BKNE/download/logo_box_ecopi_bird.png[ecoPI:Bird,300,link=https://oekofor.netlify.app/en/portfolio/ecopi-bird_en/] | ecoPi:Bird + The ecoPi:Bird is a device for automated acoustic recordings of bird songs and calls, with a self-sufficient power supply. It facilitates economical long-term monitoring, implemented with minimal personal requirements.

Learn more at: https://oekofor.netlify.app/en/portfolio/ecopi-bird_en/[oekofor.netlify.app]

| image:https://tuc.cloud/index.php/s/HQiPxG2rKbmDb64/download/dawn_chorus_logo.png[DawnChorus,300,link=https://dawn-chorus.org/en/] | Dawn Chorus + Dawn Chorus invites global participation to record bird sounds for biodiversity research, art, and raising awareness. This project aims to sharpen our senses and creativity by connecting us more deeply with the wonders of nature.

Learn more at: https://dawn-chorus.org/en/[dawn-chorus.org]

| image:https://tuc.cloud/index.php/s/M27nZ4LmNaNEKMg/download/chirpity_logo.png[Chirpity,300,link=https://chirpity.mattkirkland.co.uk] | Chirpity + Discover the wonders of bird identification with Chirpity, a desktop application powered by cutting-edge Machine Learning. With the option to choose between BirdNET or the native Chirpity model, finely tuned for Nocturnal Flight Calls, you have the flexibility to tailor your analysis to your specific needs. Perfect for enthusiasts and researchers alike, Chirpity is particularly well-suited for Nocmig and other extensive field recordings. Chirpity is available on both Windows and Mac platforms.

Learn more at: https://chirpity.mattkirkland.co.uk[chirpity.mattkirkland.co.uk]

| image:https://raw.githubusercontent.com/tphakala/birdnet-go/main/doc/BirdNET-Go-logo.webp[Go-BirdNET,300,link=https://github.com/tphakala/go-birdnet] | Go-BirdNET + Go-BirdNET is an application inspired by BirdNET-Analyzer. While the original BirdNET is based on Python, Go-BirdNET is built using Golang, aiming for simplified deployment across multiple platforms, from Windows PCs to single board computers like Raspberry Pi.

Learn more at: https://github.com/tphakala/go-birdnet[github.com/tphakala/go-birdnet]

| image:https://github.com/woheller69/whoBIRD/blob/master/fastlane/metadata/android/en-US/images/icon.png[whoBIRD,300,link=https://github.com/woheller69/whoBIRD] | whoBIRD + whoBIRD empowers you to identify birds anywhere, anytime, without an internet connection. Built upon the TFLite version of BirdNET, this Android application harnesses the power of machine learning to recognize birds directly on your device.

Learn more at: https://github.com/woheller69/whoBIRD[whoBIRD]

| image:https://github.com/ssciwr/faunanet/blob/master/faunanet_logo.png[faunanet,300,link=https://github.com/ssciwr/faunanet] | faunanet + faunanet provides a platform for bioacoustics research projects and is an extension of Birdnet-Analyzer based on birdnetlib. faunanet is written in pure Python and is developed by the Scientific Software Center at the University of Heidelberg, Germany.

Learn more at: https://github.com/ssciwr/faunanet[faunanet] |===

Other cool projects:

Working on a cool project that uses BirdNET? Let us know and we can feature your project here.

== Projects map

We have created an interactive map of projects that use BirdNET. If you are working on a project that uses BirdNET, please let us know https://github.com/kahst/BirdNET-Analyzer/issues/221[here] and we can add it to the map.

You can access the map here: https://kahst.github.io/BirdNET-Analyzer/projects.html[Open projects map]

== Model version update

[discrete] ==== V2.4, June 2023

  • more than 6,000 species worldwide
  • covers frequencies from 0 Hz to 15 kHz with two-channel spectrogram (one for low and one for high frequencies)
  • 0.826 GFLOPs, 50.5 MB as FP32
  • enhanced and optimized metadata model
  • global selection of species (birds and non-birds) with 6,522 classes (incl. 10 non-event classes)

You can find a list of previous versions here: https://github.com/kahst/BirdNET-Analyzer/tree/main/checkpoints[BirdNET-Analyzer Model Version History]

[discrete] ==== Species range model V2.4 - V2, Jan 2024

== Technical Details

Model V2.4 uses the following settings:

  • 48 kHz sampling rate (we up- and downsample automatically and can deal with artifacts from lower sampling rates)
  • we compute 2 mel spectrograms as input for the convolutional neural network: ** first one has fmin = 0 Hz and fmax = 3000; nfft = 2048; hop size = 278; 96 mel bins ** second one has fmin = 500 Hz and fmax = 15 kHz; nfft = 1024; hop size = 280; 96 mel bins
  • both spectrograms have a final resolution of 96x511 pixels
  • raw audio will be normalized between -1 and 1 before spectrogram conversion
  • we use non-linear magnitude scaling as mentioned in http://ceur-ws.org/Vol-2125/paper_181.pdf[Schlüter 2018]
  • V2.4 uses an EfficienNetB0-like backbone with a final embedding size of 1024
  • See https://github.com/kahst/BirdNET-Analyzer/issues/177#issuecomment-1772538736[this comment] for more details

== Setup === Setup (Raven Pro)

If you want to analyze audio files without any additional coding or package install, you can now use https://ravensoundsoftware.com/software/raven-pro/[Raven Pro software] to run BirdNET models. After download, BirdNET is available through the new "Learning detector" feature in Raven Pro. For more information on how to use this feature, please visit the https://ravensoundsoftware.com/article-categories/learning-detector/[Raven Pro Knowledge

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多