This repository, called UR2-LLMs contains a collection of resources and papers on Uncertainty, Reliability and Robustness in Large Language Models.
"Large language models have limited reliability, limited understanding, limited range, and hence need human supervision. " - Michael Osborne, Professor of Machine Learning in the Dept. of Engineering Science, University of Oxford, January 25, 2023
Welcome to share your papers, thoughts and ideas in this area!
GPT Is an Unreliable Information Store
Noble Ackerson
[Link]
20 Feb 2023
“Misusing” Large Language Models and the Future of MT
Arle Lommel
[Link]
20 Dec 2022
Large language models: The basics and their applications
Margo Poda
[Link]
9 Feb 2023
Prompt Engineering: Improving Responses & Reliability
Peter Foy
[Link]
19 Mar 2023
OpenAI's Cookbook on Techniques to Improve Reliability
OpenAI
[Github]
18 Mar 2023
GPT/calibration tag
Gwern Branwen
[Link]
Prompt Engineering
Lilian Weng
[Link]
LLM Powered Autonomous Agents
Lilian Weng
[Link]
Reliability in Learning Prompting
[Link]
Building LLM applications for production
Chip Huyen
[Link]
11 Apr 2023
GPT-4 Technical Report
OpenAI
arXiv 2023. [Paper][Cookbook]
16 Mar 2023
GPT-4 System Card
OpenAI
arXiv 2023. [Paper] [Github]
15 Mar 2023
Uncertainty Estimation for Natural Language Processing
Adam Fisch, Robin Jia, Tal Schuster
COLLING 2022. [Website]
Wider and Deeper LLM Networks are Fairer LLM Evaluators
Xinghua Zhang, Bowen Yu, Haiyang Yu, Yangyu Lv, Tingwen Liu, Fei Huang, Hongbo Xu, Yongbin Li
arXiv 2023. [Paper][Github]
3 Aug 2023
A Survey on Evaluation of Large Language Models
Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, Xing Xie
Arxiv 2023. [Paper][Github]
6 Jul 2023
DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models
Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, Bo Li
Arxiv, 2023. [Paper] [Github] [Website]
20 Jun 2023
In ChatGPT We Trust? Measuring and Characterizing the Reliability of ChatGPT
Xinyue Shen, Zeyuan Chen, Michael Backes, Yang Zhang
arXiv, 2023. [Paper]
18 Apr 2023
Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond
Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, Xia Hu
arXiv 2023. [Paper][Github]
27 Apr 2023
How Robust is GPT-3.5 to Predecessors? A Comprehensive Study on Language Understanding Tasks
Xuanting Chen, Junjie Ye, Can Zu, Nuo Xu, Rui Zheng, Minlong Peng, Jie Zhou, Tao Gui, Qi Zhang, Xuanjing Huang
arXiv 2023. [Paper][Github]
1 Mar 2023
Holistic Evaluation of Language Models
Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, Yuta Koreeda
arXiv 2022. [Paper] [Website] [Github] [Blog]
16 Nov 2022
Prompting GPT-3 To Be Reliable
Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang Wang, Jianfeng Wang, Jordan Boyd-Graber, Lijuan Wang
ICLR 2023. [Paper] [Github]
17 Oct 2022
Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran, Jeremiah Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han, Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary Nado, Joost van Amersfoort, Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly Buchanan, Kevin Murphy, D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, Balaji Lakshminarayanan
arXiv 2022. [Paper]
15 Jul 2022
Language Models (Mostly) Know What They Know
Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, Jared Kaplan
arXiv 2022. [Paper]
11 Jul 2022
Augmented Language Models: a Survey
Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann LeCun, Thomas Scialom
arXiv 2023. [Paper]
15 Feb 2023
A Survey of Evaluation Metrics Used for NLG Systems
Ananya B. Sai, Akash Kumar Mohankumar, Mitesh M. Khapra
ACM Computing Survey, 2022. [Paper]
18 Jan 2022
NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Kaustubh D. Dhole, et al.
ACL 2021. [Paper][Github]
6 Dec 2021
TextFlint: Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing
Tao Gui et al.
arXiv 2021. [Paper][Github]
21 Mar 2021
Robustness Gym: Unifying the NLP Evaluation Landscape
Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan, Jason Wu, Stephan Zheng, Caiming Xiong, Mohit Bansal, Christopher Ré
ACL 2021. [Paper] [Github]
13 Jan 2021
Beyond Accuracy: Behavioral Testing of NLP models with CheckList
Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, Sameer Singh
ACL 2020. [Paper][Github]
8 May 2020
BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
Yibin Wang, Haizhou Shi, Ligong Han, Dimitris Metaxas, Hao Wang
arXiv 2024. [Paper]
18 Jun 2024
Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach
Linyu Liu, Yu Pan, Xiaocheng Li, Guanting Chen
arXiv 2024. [Paper]
24 Apr 2024
**Shifting Attention to Relevance: Towards


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae 是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号