Awesome-LLM-Uncertainty-Reliability-Robustness

Awesome-LLM-Uncertainty-Reliability-Robustness

大语言模型的不确定性、可靠性和鲁棒性研究资源集

该项目汇集了大语言模型不确定性、可靠性和鲁棒性相关的研究资源。内容包括模型评估、不确定性估计、校准、幻觉、真实性和推理能力等方面。通过整理这些资料,项目为研究人员和开发者提供了深入了解大语言模型局限性和改进方向的参考。

LLM不确定性可靠性鲁棒性评估Github开源项目

Awesome-LLM-Uncertainty-Reliability-Robustness


Awesome License: MIT Made With Love

This repository, called UR2-LLMs contains a collection of resources and papers on Uncertainty, Reliability and Robustness in Large Language Models.

"Large language models have limited reliability, limited understanding, limited range, and hence need human supervision. " - Michael Osborne, Professor of Machine Learning in the Dept. of Engineering Science, University of Oxford, January 25, 2023

Welcome to share your papers, thoughts and ideas in this area!

Contents

<!-- - [Safety](#safety) - [Bias and Fairness](#bias-and-fairness) - [Privacy](#privacy) -->

Resources

Introductory Posts

GPT Is an Unreliable Information Store
Noble Ackerson
[Link]
20 Feb 2023

<!-- > Comments \ - Large Language models are unreliable information stores. What can we do about this? By design, these systems do not know what they do or don’t know. - GPT is trained on massive amounts of text data without any inherent ability to verify the accuracy or truthfulness of the information presented in that data. - So should we build on top of factually unreliable GPTs? Yes. Though when we do, we must ensure we add the appropriate trust and safety checks and the practical constraints through techniques I’ll share below. When building atop these foundational models, we can minimize inaccuracy using proper guardrails with techniques like prompt engineering and context injection. Or, if we have our own larger datasets, more advanced approaches such as Transfer learning, fine-tuning, and reinforcement learning are areas to consider. nice blog -->

“Misusing” Large Language Models and the Future of MT
Arle Lommel
[Link]
20 Dec 2022

<!-- 1. Large language models make the “trust problem” worse. Despite the expectation that large language models would lead to the next wave of dramatic improvement in MT, they introduce some serious risks. One of the biggest challenges for MT now is that it is not reliable. Although the development of responsive and responsible MT should improve this, large language models that can produce convincing-sounding output that is nonsense are likely to increase the risk of dangerous or harmful translation errors. My experiments showed that users should not trust what Galactica says at face value, but instead need to examine it carefully to verify everything. Note that this problem will be worse in languages with relatively little training data in these models. 6. Quality estimation will become key. As the output of MT becomes more fluent, detecting problems will become increasingly difficult, which can: a) raise the risk that content can pose; and b) increase the cognitive load for MT editors and thereby decrease their efficiency. This means that quality estimation will become more important, requiring breakthroughs in this area. When the technology can reliably identify problems and risk, it will address the trust problem. -->

Large language models: The basics and their applications
Margo Poda
[Link]
9 Feb 2023

<!-- > Reliability needs human supervison which is the key! -->

Prompt Engineering: Improving Responses & Reliability
Peter Foy
[Link]
19 Mar 2023

<!-- nice blog -->

OpenAI's Cookbook on Techniques to Improve Reliability
OpenAI
[Github]
18 Mar 2023

GPT/calibration tag
Gwern Branwen
[Link]

Prompt Engineering
Lilian Weng
[Link]

LLM Powered Autonomous Agents
Lilian Weng
[Link]

Reliability in Learning Prompting
[Link]

Building LLM applications for production
Chip Huyen
[Link]
11 Apr 2023

Technical Reports

GPT-4 Technical Report
OpenAI
arXiv 2023. [Paper][Cookbook]
16 Mar 2023

GPT-4 System Card
OpenAI
arXiv 2023. [Paper] [Github]
15 Mar 2023

Tutorial

Uncertainty Estimation for Natural Language Processing
Adam Fisch, Robin Jia, Tal Schuster
COLLING 2022. [Website]

<!-- ## Prompt Engineering & Papers **PromptPapers** - [[Link](https://github.com/thunlp/PromptPapers)] **Awesome-Prompt-Engineering** - [[Link](https://github.com/promptslab/Awesome-Prompt-Engineering)] -->

Papers

Evaluation & Survey

Wider and Deeper LLM Networks are Fairer LLM Evaluators
Xinghua Zhang, Bowen Yu, Haiyang Yu, Yangyu Lv, Tingwen Liu, Fei Huang, Hongbo Xu, Yongbin Li
arXiv 2023. [Paper][Github]
3 Aug 2023

A Survey on Evaluation of Large Language Models
Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Kaijie Zhu, Hao Chen, Linyi Yang, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, Xing Xie
Arxiv 2023. [Paper][Github]
6 Jul 2023

DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models
Boxin Wang, Weixin Chen, Hengzhi Pei, Chulin Xie, Mintong Kang, Chenhui Zhang, Chejian Xu, Zidi Xiong, Ritik Dutta, Rylan Schaeffer, Sang T. Truong, Simran Arora, Mantas Mazeika, Dan Hendrycks, Zinan Lin, Yu Cheng, Sanmi Koyejo, Dawn Song, Bo Li
Arxiv, 2023. [Paper] [Github] [Website]
20 Jun 2023

In ChatGPT We Trust? Measuring and Characterizing the Reliability of ChatGPT
Xinyue Shen, Zeyuan Chen, Michael Backes, Yang Zhang
arXiv, 2023. [Paper]
18 Apr 2023

Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond
Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haoming Jiang, Bing Yin, Xia Hu
arXiv 2023. [Paper][Github]
27 Apr 2023

How Robust is GPT-3.5 to Predecessors? A Comprehensive Study on Language Understanding Tasks
Xuanting Chen, Junjie Ye, Can Zu, Nuo Xu, Rui Zheng, Minlong Peng, Jie Zhou, Tao Gui, Qi Zhang, Xuanjing Huang
arXiv 2023. [Paper][Github]
1 Mar 2023

Holistic Evaluation of Language Models
Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, Benjamin Newman, Binhang Yuan, Bobby Yan, Ce Zhang, Christian Cosgrove, Christopher D. Manning, Christopher Ré, Diana Acosta-Navas, Drew A. Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng, Mert Yuksekgonul, Mirac Suzgun, Nathan Kim, Neel Guha, Niladri Chatterji, Omar Khattab, Peter Henderson, Qian Huang, Ryan Chi, Sang Michael Xie, Shibani Santurkar, Surya Ganguli, Tatsunori Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav Chaudhary, William Wang, Xuechen Li, Yifan Mai, Yuhui Zhang, Yuta Koreeda
arXiv 2022. [Paper] [Website] [Github] [Blog]
16 Nov 2022

Prompting GPT-3 To Be Reliable
Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang Wang, Jianfeng Wang, Jordan Boyd-Graber, Lijuan Wang
ICLR 2023. [Paper] [Github]
17 Oct 2022

Plex: Towards Reliability using Pretrained Large Model Extensions
Dustin Tran, Jeremiah Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han, Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary Nado, Joost van Amersfoort, Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly Buchanan, Kevin Murphy, D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, Balaji Lakshminarayanan
arXiv 2022. [Paper]
15 Jul 2022

Language Models (Mostly) Know What They Know
Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott Johnston, Sheer El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao Bai, Sam Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson, Jackson Kernion, Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam McCandlish, Chris Olah, Jared Kaplan
arXiv 2022. [Paper]
11 Jul 2022

Augmented Language Models: a Survey
Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, Edouard Grave, Yann LeCun, Thomas Scialom
arXiv 2023. [Paper]
15 Feb 2023

A Survey of Evaluation Metrics Used for NLG Systems
Ananya B. Sai, Akash Kumar Mohankumar, Mitesh M. Khapra
ACM Computing Survey, 2022. [Paper]
18 Jan 2022

NL-Augmenter: A Framework for Task-Sensitive Natural Language Augmentation
Kaustubh D. Dhole, et al.
ACL 2021. [Paper][Github]
6 Dec 2021

TextFlint: Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing
Tao Gui et al.
arXiv 2021. [Paper][Github]
21 Mar 2021

Robustness Gym: Unifying the NLP Evaluation Landscape
Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan, Jason Wu, Stephan Zheng, Caiming Xiong, Mohit Bansal, Christopher Ré
ACL 2021. [Paper] [Github]
13 Jan 2021

Beyond Accuracy: Behavioral Testing of NLP models with CheckList
Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, Sameer Singh
ACL 2020. [Paper][Github]
8 May 2020

Uncertainty

Uncertainty Estimation

BLoB: Bayesian Low-Rank Adaptation by Backpropagation for Large Language Models
Yibin Wang, Haizhou Shi, Ligong Han, Dimitris Metaxas, Hao Wang
arXiv 2024. [Paper]
18 Jun 2024

Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach
Linyu Liu, Yu Pan, Xiaocheng Li, Guanting Chen
arXiv 2024. [Paper]
24 Apr 2024

**Shifting Attention to Relevance: Towards

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多