GNN4Traffic

GNN4Traffic

图神经网络在交通预测中的应用与研究综述

GNN4Traffic项目汇集了图神经网络在交通预测领域的最新研究成果,涵盖多种GNN模型用于交通流量、需求和人流预测。项目提供相关论文、代码资源、数据集推荐和统计分析,是探索GNN在智能交通系统应用的重要资源库。

GNN4Traffic图神经网络交通预测深度学习空间时间数据Github开源项目

GNN4Traffic

This is the repository for the collection of Graph Neural Network for Traffic Forecasting.

If you find this repository helpful, you may consider cite our relevant work:

  • Jiang W, Luo J. <b>Graph Neural Network for Traffic Forecasting: A Survey[J]</b>. Expert Systems with Applications, 2022. Link
  • Jiang W, Luo J. <b>Big Data for Traffic Estimation and Prediction: A Survey of Data and Tools[J]</b>. Applied System Innovation. 2022; 5(1):23. Link
  • Jiang W. <b>Bike sharing usage prediction with deep learning: a survey[J]</b>. Neural Computing and Applications, 2022, 34(18): 15369-15385. Link
  • Jiang W, Luo J, He M, Gu W. <b>Graph Neural Network for Traffic Forecasting: The Research Progress[J]</b>. ISPRS International Journal of Geo-Information, 2023. Link

For a wider collection of deep learning for traffic forecasting, you may check: DL4Traffic

Advertisement: We would like to cordially invite you to submit a paper to our special issue on "Graph Neural Network for Traffic Forecasting" for Information Fusion (SCI-indexed, Impact Factor: 17.564).

Advertisement: We would like to cordially invite you to submit a paper to our Topical Collection on "Deep Neural Networks for Traffic Forecasting" for Neural Computing and Applications (SCI-indexed, Impact Factor: 6.0).

Advertisement: If you are interested in maintaining this repository, feel free to drop me an email.

Some simple paper statistics results are as follows.

Paper year count:

Top conferences with paper counts:

Top journals with paper counts:

Relevant Repositories

  • Deep Learning Time Series Forecasting Link

  • A collection of research on spatio-temporal data mining Link

  • Some TrafficFlowForecasting Solutions Link

  • Urban-computing-papers Link

  • Awesome-Mobility-Machine-Learning-Contents Link

  • Traffic Prediction Link

  • Paper & Code & Dataset Collection of Spatial-Temporal Data Mining. Link

Relevant Data Repositories

  • Strategic Transport Planning Dataset Link

Description: A graph based strategic transport planning dataset, aimed at creating the next generation of deep graph neural networks for transfer learning. Based on simulation results of the Four Step Model in PTV Visum. Relevant Thesis: Development of a Deep Learning Surrogate for the Four-Step Transportation Model

  • Zhang Y, Gong Q, Chen Y, et al. <b>A Human Mobility Dataset Collected via LBSLab[J]</b>. Data in Brief, 2023: 108898. Link Data
  • Jiang R, Cai Z, Wang Z, et al. <b>Yahoo! Bousai Crowd Data: A Large-Scale Crowd Density and Flow Dataset in Tokyo and Osaka[C]</b>//2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022: 6676-6677. Link Data

2024

Journal

  • Ju W, Zhao Y, et al. <b>COOL: A conjoint perspective on spatio-temporal graph neural network for traffic forecasting[J]</b>. Information Fusion, 2024. Link
  • Fang S, Ji W, Xiang S, et al. <b>PreSTNet: Pre-trained Spatio-Temporal Network for traffic forecasting[J]</b>. Information Fusion, 2024, 106: 102241. Link Code

Preprint

  • Li H, Zhao Y, et al. <b>A Survey on Graph Neural Networks in Intelligent Transportation Systems[J]</b>. arXiv preprint arXiv:2401.00713, 2024. Link

2023

Journal

  • Qi X, Yao J, Wang P, et al. <b>Combining weather factors to predict traffic flow: A spatial‐temporal fusion graph convolutional network‐based deep learning approach[J]</b>. IET Intelligent Transport Systems, 2023. Link
  • Tian R, Wang C, Hu J, et al. <b>MFSTGN: a multi-scale spatial-temporal fusion graph network for traffic prediction[J]</b>. Applied Intelligence, 2023: 1-20. Link
  • Zhao W, Zhang S, Zhou B, et al. <b>Multi-spatio-temporal Fusion Graph Recurrent Network for Traffic Forecasting[J]</b>. Engineering Applications of Artificial Intelligence, 2023, 124: 106615. Link
  • Zhou J, Qin X, Ding Y, et al. <b>Spatial–Temporal Dynamic Graph Differential Equation Network for Traffic Flow Forecasting[J]</b>. Mathematics, 2023, 11(13): 2867. Link
  • Wang C, Wang L, Wei S, et al. <b>STN-GCN: Spatial and Temporal Normalization Graph Convolutional Neural Networks for Traffic Flow Forecasting[J]</b>. Electronics, 2023, 12(14): 3158. Link
  • Cheng X, He Y, Zhang P, et al. <b>Traffic flow prediction based on information aggregation and comprehensive temporal-spatial synchronous graph neural network[J]</b>. IEEE Access, 2023. Link
  • Zhao Z, Shen G, Zhou J, et al. <b>Spatial-temporal hypergraph convolutional network for traffic forecasting[J]</b>. PeerJ Computer Science, 2023, 9: e1450. Link Code
  • Liang G, Kintak U, Ning X, et al. <b>Semantics-aware dynamic graph convolutional network for traffic flow forecasting[J]</b>. IEEE Transactions on Vehicular Technology, 2023. Link Code
  • Wen Y, Li Z, Wang X, et al. <b>Traffic demand prediction based on spatial-temporal guided multi graph Sandwich-Transformer[J]</b>. Information Sciences, 2023: 119269. Link Code
  • Hu S, Ye Y, Hu Q, et al. <b>A Federated Learning-Based Framework for Ride-sourcing Traffic Demand Prediction[J]</b>. IEEE Transactions on Vehicular Technology, 2023. Link
  • Ouyang X, Yang Y, Zhou W, et al. <b>CityTrans: Domain-Adversarial Training with Knowledge Transfer for Spatio-Temporal Prediction across Cities[J]</b>. IEEE Transactions on Knowledge and Data Engineering, 2023. Link
  • Hu C, Liu X, Wu S, et al. <b>Dynamic Graph Convolutional Crowd Flow Prediction Model Based on Residual Network Structure[J]</b>. Applied Sciences, 2023, 13(12): 7271. Link
  • Ma C, Sun K, Chang L, et al. <b>Enhanced Information Graph Recursive Network for Traffic Forecasting[J]</b>. Electronics, 2023, 12(11): 2519. Link
  • García-Sigüenza J, Llorens-Largo F, Tortosa L, et al. <b>Explainability techniques applied to road traffic forecasting using Graph Neural Network models[J]</b>. Information Sciences, 2023: 119320. Link
  • Liu T, Jiang A, Zhou J, et al. <b>GraphSAGE-Based Dynamic Spatial–Temporal Graph Convolutional Network for Traffic Prediction[J]</b>. IEEE Transactions on Intelligent Transportation Systems, 2023. Link
  • Yu W, Huang X, Qiu Y, et al. <b>GSTC-Unet: A U-shaped multi-scaled spatiotemporal graph convolutional network with channel self-attention mechanism for traffic flow forecasting[J]</b>. Expert Systems with Applications, 2023: 120724. Link
  • Li Z, Han Y, Xu Z, et al. <b>PMGCN: Progressive Multi-Graph Convolutional Network for Traffic Forecasting[J]</b>. ISPRS International Journal of Geo-Information, 2023, 12(6): 241. Link
  • Ning T, Wang J, Duan X. <b>Research on expressway traffic flow prediction model based on MSTA-GCN[J]</b>. Journal of Ambient Intelligence and Humanized Computing, 2022: 1-12. Link
  • Zhang Q, Li C, Su F, et al. <b>Spatio-Temporal Residual Graph Attention Network for Traffic Flow Forecasting[J]</b>. IEEE Internet of Things Journal, 2023. Link
  • Chang Z, Liu C, Jia J. <b>STA-GCN: Spatial-Temporal Self-Attention Graph Convolutional Networks for Traffic-Flow Prediction[J]</b>. Applied Sciences, 2023, 13(11): 6796. Link
  • Yin L, Liu P, Wu Y, et al. <b>ST-VGBiGRU: A Hybrid Model for Traffic Flow Prediction With Spatio-temporal Multimodality[J]</b>. IEEE Access, 2023. Link
  • Zheng G, Chai W K, Zhang J, et al. <b>VDGCNeT: A novel network-wide Virtual Dynamic Graph Convolution Neural network and Transformer-based traffic prediction model[J]</b>. Knowledge-Based Systems, 2023: 110676. Link
  • Weng W, Fan J, Wu H, et al. <b>A Decomposition Dynamic Graph Convolutional Recurrent Network for Traffic Forecasting[J]</b>. Pattern Recognition, 2023: 109670. Link Code
  • Corrias R, Gjoreski M, Langheinrich M. <b>Exploring Transformer and Graph Convolutional Networks for Human Mobility Modeling[J]</b>. Sensors, 2023, 23(10): 4803. Link Code
  • Lablack M, Shen Y. <b>Spatio-temporal graph mixformer for traffic forecasting[J]</b>. Expert Systems with Applications, 2023, 228: 120281. Link Code
  • Zhao J, Zhang R, Sun Q, et al. <b>Adaptive graph convolutional network-based short-term passenger flow prediction for metro[J]</b>. Journal of Intelligent Transportation Systems, 2023: 1-10. Link
  • Chen Y, Qin Y, Li K, et al. <b>Adaptive Spatial-Temporal Graph Convolution Networks for Collaborative Local-Global Learning in Traffic Prediction[J]</b>. IEEE Transactions on Vehicular Technology, 2023. Link
  • Wang B, Gao F, Tong L, et al. <b>Channel attention-based spatial-temporal graph neural networks for traffic prediction[J]</b>. Data Technologies and Applications, 2023. Link
  • Cao Y, Liu L, Dong Y. <b>Convolutional Long Short-Term Memory Two-Dimensional Bidirectional Graph Convolutional Network for Taxi Demand Prediction[J]</b>. Sustainability, 2023, 15(10): 7903. Link
  • Zhao T, Huang Z, Tu W, et al. <b>Developing a multiview spatiotemporal model based on deep graph neural networks to predict the travel demand by bus[J]</b>. International Journal of Geographical Information Science, 2023: 1-27. Link
  • Karim S, Mehmud M, Alamgir Z, et al. <b>Dynamic Spatial Correlation in Graph WaveNet for Road Traffic Prediction[J]</b>. Transportation Research Record, 2023: 03611981221151024. Link
  • Yue W, Zhou D, Wang S, et al. <b>Engineering Traffic Prediction With Online Data Imputation: A Graph-Theoretic Perspective[J]</b>. IEEE Systems Journal, 2023. Link
  • Feng X, Chen Y, Li H, et al. <b>Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction[J]</b>. Sustainability, 2023, 15(9): 7696.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多