GNN4Traffic

GNN4Traffic

图神经网络在交通预测中的应用与研究综述

GNN4Traffic项目汇集了图神经网络在交通预测领域的最新研究成果,涵盖多种GNN模型用于交通流量、需求和人流预测。项目提供相关论文、代码资源、数据集推荐和统计分析,是探索GNN在智能交通系统应用的重要资源库。

GNN4Traffic图神经网络交通预测深度学习空间时间数据Github开源项目

GNN4Traffic

This is the repository for the collection of Graph Neural Network for Traffic Forecasting.

If you find this repository helpful, you may consider cite our relevant work:

  • Jiang W, Luo J. <b>Graph Neural Network for Traffic Forecasting: A Survey[J]</b>. Expert Systems with Applications, 2022. Link
  • Jiang W, Luo J. <b>Big Data for Traffic Estimation and Prediction: A Survey of Data and Tools[J]</b>. Applied System Innovation. 2022; 5(1):23. Link
  • Jiang W. <b>Bike sharing usage prediction with deep learning: a survey[J]</b>. Neural Computing and Applications, 2022, 34(18): 15369-15385. Link
  • Jiang W, Luo J, He M, Gu W. <b>Graph Neural Network for Traffic Forecasting: The Research Progress[J]</b>. ISPRS International Journal of Geo-Information, 2023. Link

For a wider collection of deep learning for traffic forecasting, you may check: DL4Traffic

Advertisement: We would like to cordially invite you to submit a paper to our special issue on "Graph Neural Network for Traffic Forecasting" for Information Fusion (SCI-indexed, Impact Factor: 17.564).

Advertisement: We would like to cordially invite you to submit a paper to our Topical Collection on "Deep Neural Networks for Traffic Forecasting" for Neural Computing and Applications (SCI-indexed, Impact Factor: 6.0).

Advertisement: If you are interested in maintaining this repository, feel free to drop me an email.

Some simple paper statistics results are as follows.

Paper year count:

Top conferences with paper counts:

Top journals with paper counts:

Relevant Repositories

  • Deep Learning Time Series Forecasting Link

  • A collection of research on spatio-temporal data mining Link

  • Some TrafficFlowForecasting Solutions Link

  • Urban-computing-papers Link

  • Awesome-Mobility-Machine-Learning-Contents Link

  • Traffic Prediction Link

  • Paper & Code & Dataset Collection of Spatial-Temporal Data Mining. Link

Relevant Data Repositories

  • Strategic Transport Planning Dataset Link

Description: A graph based strategic transport planning dataset, aimed at creating the next generation of deep graph neural networks for transfer learning. Based on simulation results of the Four Step Model in PTV Visum. Relevant Thesis: Development of a Deep Learning Surrogate for the Four-Step Transportation Model

  • Zhang Y, Gong Q, Chen Y, et al. <b>A Human Mobility Dataset Collected via LBSLab[J]</b>. Data in Brief, 2023: 108898. Link Data
  • Jiang R, Cai Z, Wang Z, et al. <b>Yahoo! Bousai Crowd Data: A Large-Scale Crowd Density and Flow Dataset in Tokyo and Osaka[C]</b>//2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022: 6676-6677. Link Data

2024

Journal

  • Ju W, Zhao Y, et al. <b>COOL: A conjoint perspective on spatio-temporal graph neural network for traffic forecasting[J]</b>. Information Fusion, 2024. Link
  • Fang S, Ji W, Xiang S, et al. <b>PreSTNet: Pre-trained Spatio-Temporal Network for traffic forecasting[J]</b>. Information Fusion, 2024, 106: 102241. Link Code

Preprint

  • Li H, Zhao Y, et al. <b>A Survey on Graph Neural Networks in Intelligent Transportation Systems[J]</b>. arXiv preprint arXiv:2401.00713, 2024. Link

2023

Journal

  • Qi X, Yao J, Wang P, et al. <b>Combining weather factors to predict traffic flow: A spatial‐temporal fusion graph convolutional network‐based deep learning approach[J]</b>. IET Intelligent Transport Systems, 2023. Link
  • Tian R, Wang C, Hu J, et al. <b>MFSTGN: a multi-scale spatial-temporal fusion graph network for traffic prediction[J]</b>. Applied Intelligence, 2023: 1-20. Link
  • Zhao W, Zhang S, Zhou B, et al. <b>Multi-spatio-temporal Fusion Graph Recurrent Network for Traffic Forecasting[J]</b>. Engineering Applications of Artificial Intelligence, 2023, 124: 106615. Link
  • Zhou J, Qin X, Ding Y, et al. <b>Spatial–Temporal Dynamic Graph Differential Equation Network for Traffic Flow Forecasting[J]</b>. Mathematics, 2023, 11(13): 2867. Link
  • Wang C, Wang L, Wei S, et al. <b>STN-GCN: Spatial and Temporal Normalization Graph Convolutional Neural Networks for Traffic Flow Forecasting[J]</b>. Electronics, 2023, 12(14): 3158. Link
  • Cheng X, He Y, Zhang P, et al. <b>Traffic flow prediction based on information aggregation and comprehensive temporal-spatial synchronous graph neural network[J]</b>. IEEE Access, 2023. Link
  • Zhao Z, Shen G, Zhou J, et al. <b>Spatial-temporal hypergraph convolutional network for traffic forecasting[J]</b>. PeerJ Computer Science, 2023, 9: e1450. Link Code
  • Liang G, Kintak U, Ning X, et al. <b>Semantics-aware dynamic graph convolutional network for traffic flow forecasting[J]</b>. IEEE Transactions on Vehicular Technology, 2023. Link Code
  • Wen Y, Li Z, Wang X, et al. <b>Traffic demand prediction based on spatial-temporal guided multi graph Sandwich-Transformer[J]</b>. Information Sciences, 2023: 119269. Link Code
  • Hu S, Ye Y, Hu Q, et al. <b>A Federated Learning-Based Framework for Ride-sourcing Traffic Demand Prediction[J]</b>. IEEE Transactions on Vehicular Technology, 2023. Link
  • Ouyang X, Yang Y, Zhou W, et al. <b>CityTrans: Domain-Adversarial Training with Knowledge Transfer for Spatio-Temporal Prediction across Cities[J]</b>. IEEE Transactions on Knowledge and Data Engineering, 2023. Link
  • Hu C, Liu X, Wu S, et al. <b>Dynamic Graph Convolutional Crowd Flow Prediction Model Based on Residual Network Structure[J]</b>. Applied Sciences, 2023, 13(12): 7271. Link
  • Ma C, Sun K, Chang L, et al. <b>Enhanced Information Graph Recursive Network for Traffic Forecasting[J]</b>. Electronics, 2023, 12(11): 2519. Link
  • García-Sigüenza J, Llorens-Largo F, Tortosa L, et al. <b>Explainability techniques applied to road traffic forecasting using Graph Neural Network models[J]</b>. Information Sciences, 2023: 119320. Link
  • Liu T, Jiang A, Zhou J, et al. <b>GraphSAGE-Based Dynamic Spatial–Temporal Graph Convolutional Network for Traffic Prediction[J]</b>. IEEE Transactions on Intelligent Transportation Systems, 2023. Link
  • Yu W, Huang X, Qiu Y, et al. <b>GSTC-Unet: A U-shaped multi-scaled spatiotemporal graph convolutional network with channel self-attention mechanism for traffic flow forecasting[J]</b>. Expert Systems with Applications, 2023: 120724. Link
  • Li Z, Han Y, Xu Z, et al. <b>PMGCN: Progressive Multi-Graph Convolutional Network for Traffic Forecasting[J]</b>. ISPRS International Journal of Geo-Information, 2023, 12(6): 241. Link
  • Ning T, Wang J, Duan X. <b>Research on expressway traffic flow prediction model based on MSTA-GCN[J]</b>. Journal of Ambient Intelligence and Humanized Computing, 2022: 1-12. Link
  • Zhang Q, Li C, Su F, et al. <b>Spatio-Temporal Residual Graph Attention Network for Traffic Flow Forecasting[J]</b>. IEEE Internet of Things Journal, 2023. Link
  • Chang Z, Liu C, Jia J. <b>STA-GCN: Spatial-Temporal Self-Attention Graph Convolutional Networks for Traffic-Flow Prediction[J]</b>. Applied Sciences, 2023, 13(11): 6796. Link
  • Yin L, Liu P, Wu Y, et al. <b>ST-VGBiGRU: A Hybrid Model for Traffic Flow Prediction With Spatio-temporal Multimodality[J]</b>. IEEE Access, 2023. Link
  • Zheng G, Chai W K, Zhang J, et al. <b>VDGCNeT: A novel network-wide Virtual Dynamic Graph Convolution Neural network and Transformer-based traffic prediction model[J]</b>. Knowledge-Based Systems, 2023: 110676. Link
  • Weng W, Fan J, Wu H, et al. <b>A Decomposition Dynamic Graph Convolutional Recurrent Network for Traffic Forecasting[J]</b>. Pattern Recognition, 2023: 109670. Link Code
  • Corrias R, Gjoreski M, Langheinrich M. <b>Exploring Transformer and Graph Convolutional Networks for Human Mobility Modeling[J]</b>. Sensors, 2023, 23(10): 4803. Link Code
  • Lablack M, Shen Y. <b>Spatio-temporal graph mixformer for traffic forecasting[J]</b>. Expert Systems with Applications, 2023, 228: 120281. Link Code
  • Zhao J, Zhang R, Sun Q, et al. <b>Adaptive graph convolutional network-based short-term passenger flow prediction for metro[J]</b>. Journal of Intelligent Transportation Systems, 2023: 1-10. Link
  • Chen Y, Qin Y, Li K, et al. <b>Adaptive Spatial-Temporal Graph Convolution Networks for Collaborative Local-Global Learning in Traffic Prediction[J]</b>. IEEE Transactions on Vehicular Technology, 2023. Link
  • Wang B, Gao F, Tong L, et al. <b>Channel attention-based spatial-temporal graph neural networks for traffic prediction[J]</b>. Data Technologies and Applications, 2023. Link
  • Cao Y, Liu L, Dong Y. <b>Convolutional Long Short-Term Memory Two-Dimensional Bidirectional Graph Convolutional Network for Taxi Demand Prediction[J]</b>. Sustainability, 2023, 15(10): 7903. Link
  • Zhao T, Huang Z, Tu W, et al. <b>Developing a multiview spatiotemporal model based on deep graph neural networks to predict the travel demand by bus[J]</b>. International Journal of Geographical Information Science, 2023: 1-27. Link
  • Karim S, Mehmud M, Alamgir Z, et al. <b>Dynamic Spatial Correlation in Graph WaveNet for Road Traffic Prediction[J]</b>. Transportation Research Record, 2023: 03611981221151024. Link
  • Yue W, Zhou D, Wang S, et al. <b>Engineering Traffic Prediction With Online Data Imputation: A Graph-Theoretic Perspective[J]</b>. IEEE Systems Journal, 2023. Link
  • Feng X, Chen Y, Li H, et al. <b>Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction[J]</b>. Sustainability, 2023, 15(9): 7696.

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多