GNN4Traffic

GNN4Traffic

图神经网络在交通预测中的应用与研究综述

GNN4Traffic项目汇集了图神经网络在交通预测领域的最新研究成果,涵盖多种GNN模型用于交通流量、需求和人流预测。项目提供相关论文、代码资源、数据集推荐和统计分析,是探索GNN在智能交通系统应用的重要资源库。

GNN4Traffic图神经网络交通预测深度学习空间时间数据Github开源项目

GNN4Traffic

This is the repository for the collection of Graph Neural Network for Traffic Forecasting.

If you find this repository helpful, you may consider cite our relevant work:

  • Jiang W, Luo J. <b>Graph Neural Network for Traffic Forecasting: A Survey[J]</b>. Expert Systems with Applications, 2022. Link
  • Jiang W, Luo J. <b>Big Data for Traffic Estimation and Prediction: A Survey of Data and Tools[J]</b>. Applied System Innovation. 2022; 5(1):23. Link
  • Jiang W. <b>Bike sharing usage prediction with deep learning: a survey[J]</b>. Neural Computing and Applications, 2022, 34(18): 15369-15385. Link
  • Jiang W, Luo J, He M, Gu W. <b>Graph Neural Network for Traffic Forecasting: The Research Progress[J]</b>. ISPRS International Journal of Geo-Information, 2023. Link

For a wider collection of deep learning for traffic forecasting, you may check: DL4Traffic

Advertisement: We would like to cordially invite you to submit a paper to our special issue on "Graph Neural Network for Traffic Forecasting" for Information Fusion (SCI-indexed, Impact Factor: 17.564).

Advertisement: We would like to cordially invite you to submit a paper to our Topical Collection on "Deep Neural Networks for Traffic Forecasting" for Neural Computing and Applications (SCI-indexed, Impact Factor: 6.0).

Advertisement: If you are interested in maintaining this repository, feel free to drop me an email.

Some simple paper statistics results are as follows.

Paper year count:

Top conferences with paper counts:

Top journals with paper counts:

Relevant Repositories

  • Deep Learning Time Series Forecasting Link

  • A collection of research on spatio-temporal data mining Link

  • Some TrafficFlowForecasting Solutions Link

  • Urban-computing-papers Link

  • Awesome-Mobility-Machine-Learning-Contents Link

  • Traffic Prediction Link

  • Paper & Code & Dataset Collection of Spatial-Temporal Data Mining. Link

Relevant Data Repositories

  • Strategic Transport Planning Dataset Link

Description: A graph based strategic transport planning dataset, aimed at creating the next generation of deep graph neural networks for transfer learning. Based on simulation results of the Four Step Model in PTV Visum. Relevant Thesis: Development of a Deep Learning Surrogate for the Four-Step Transportation Model

  • Zhang Y, Gong Q, Chen Y, et al. <b>A Human Mobility Dataset Collected via LBSLab[J]</b>. Data in Brief, 2023: 108898. Link Data
  • Jiang R, Cai Z, Wang Z, et al. <b>Yahoo! Bousai Crowd Data: A Large-Scale Crowd Density and Flow Dataset in Tokyo and Osaka[C]</b>//2022 IEEE International Conference on Big Data (Big Data). IEEE, 2022: 6676-6677. Link Data

2024

Journal

  • Ju W, Zhao Y, et al. <b>COOL: A conjoint perspective on spatio-temporal graph neural network for traffic forecasting[J]</b>. Information Fusion, 2024. Link
  • Fang S, Ji W, Xiang S, et al. <b>PreSTNet: Pre-trained Spatio-Temporal Network for traffic forecasting[J]</b>. Information Fusion, 2024, 106: 102241. Link Code

Preprint

  • Li H, Zhao Y, et al. <b>A Survey on Graph Neural Networks in Intelligent Transportation Systems[J]</b>. arXiv preprint arXiv:2401.00713, 2024. Link

2023

Journal

  • Qi X, Yao J, Wang P, et al. <b>Combining weather factors to predict traffic flow: A spatial‐temporal fusion graph convolutional network‐based deep learning approach[J]</b>. IET Intelligent Transport Systems, 2023. Link
  • Tian R, Wang C, Hu J, et al. <b>MFSTGN: a multi-scale spatial-temporal fusion graph network for traffic prediction[J]</b>. Applied Intelligence, 2023: 1-20. Link
  • Zhao W, Zhang S, Zhou B, et al. <b>Multi-spatio-temporal Fusion Graph Recurrent Network for Traffic Forecasting[J]</b>. Engineering Applications of Artificial Intelligence, 2023, 124: 106615. Link
  • Zhou J, Qin X, Ding Y, et al. <b>Spatial–Temporal Dynamic Graph Differential Equation Network for Traffic Flow Forecasting[J]</b>. Mathematics, 2023, 11(13): 2867. Link
  • Wang C, Wang L, Wei S, et al. <b>STN-GCN: Spatial and Temporal Normalization Graph Convolutional Neural Networks for Traffic Flow Forecasting[J]</b>. Electronics, 2023, 12(14): 3158. Link
  • Cheng X, He Y, Zhang P, et al. <b>Traffic flow prediction based on information aggregation and comprehensive temporal-spatial synchronous graph neural network[J]</b>. IEEE Access, 2023. Link
  • Zhao Z, Shen G, Zhou J, et al. <b>Spatial-temporal hypergraph convolutional network for traffic forecasting[J]</b>. PeerJ Computer Science, 2023, 9: e1450. Link Code
  • Liang G, Kintak U, Ning X, et al. <b>Semantics-aware dynamic graph convolutional network for traffic flow forecasting[J]</b>. IEEE Transactions on Vehicular Technology, 2023. Link Code
  • Wen Y, Li Z, Wang X, et al. <b>Traffic demand prediction based on spatial-temporal guided multi graph Sandwich-Transformer[J]</b>. Information Sciences, 2023: 119269. Link Code
  • Hu S, Ye Y, Hu Q, et al. <b>A Federated Learning-Based Framework for Ride-sourcing Traffic Demand Prediction[J]</b>. IEEE Transactions on Vehicular Technology, 2023. Link
  • Ouyang X, Yang Y, Zhou W, et al. <b>CityTrans: Domain-Adversarial Training with Knowledge Transfer for Spatio-Temporal Prediction across Cities[J]</b>. IEEE Transactions on Knowledge and Data Engineering, 2023. Link
  • Hu C, Liu X, Wu S, et al. <b>Dynamic Graph Convolutional Crowd Flow Prediction Model Based on Residual Network Structure[J]</b>. Applied Sciences, 2023, 13(12): 7271. Link
  • Ma C, Sun K, Chang L, et al. <b>Enhanced Information Graph Recursive Network for Traffic Forecasting[J]</b>. Electronics, 2023, 12(11): 2519. Link
  • García-Sigüenza J, Llorens-Largo F, Tortosa L, et al. <b>Explainability techniques applied to road traffic forecasting using Graph Neural Network models[J]</b>. Information Sciences, 2023: 119320. Link
  • Liu T, Jiang A, Zhou J, et al. <b>GraphSAGE-Based Dynamic Spatial–Temporal Graph Convolutional Network for Traffic Prediction[J]</b>. IEEE Transactions on Intelligent Transportation Systems, 2023. Link
  • Yu W, Huang X, Qiu Y, et al. <b>GSTC-Unet: A U-shaped multi-scaled spatiotemporal graph convolutional network with channel self-attention mechanism for traffic flow forecasting[J]</b>. Expert Systems with Applications, 2023: 120724. Link
  • Li Z, Han Y, Xu Z, et al. <b>PMGCN: Progressive Multi-Graph Convolutional Network for Traffic Forecasting[J]</b>. ISPRS International Journal of Geo-Information, 2023, 12(6): 241. Link
  • Ning T, Wang J, Duan X. <b>Research on expressway traffic flow prediction model based on MSTA-GCN[J]</b>. Journal of Ambient Intelligence and Humanized Computing, 2022: 1-12. Link
  • Zhang Q, Li C, Su F, et al. <b>Spatio-Temporal Residual Graph Attention Network for Traffic Flow Forecasting[J]</b>. IEEE Internet of Things Journal, 2023. Link
  • Chang Z, Liu C, Jia J. <b>STA-GCN: Spatial-Temporal Self-Attention Graph Convolutional Networks for Traffic-Flow Prediction[J]</b>. Applied Sciences, 2023, 13(11): 6796. Link
  • Yin L, Liu P, Wu Y, et al. <b>ST-VGBiGRU: A Hybrid Model for Traffic Flow Prediction With Spatio-temporal Multimodality[J]</b>. IEEE Access, 2023. Link
  • Zheng G, Chai W K, Zhang J, et al. <b>VDGCNeT: A novel network-wide Virtual Dynamic Graph Convolution Neural network and Transformer-based traffic prediction model[J]</b>. Knowledge-Based Systems, 2023: 110676. Link
  • Weng W, Fan J, Wu H, et al. <b>A Decomposition Dynamic Graph Convolutional Recurrent Network for Traffic Forecasting[J]</b>. Pattern Recognition, 2023: 109670. Link Code
  • Corrias R, Gjoreski M, Langheinrich M. <b>Exploring Transformer and Graph Convolutional Networks for Human Mobility Modeling[J]</b>. Sensors, 2023, 23(10): 4803. Link Code
  • Lablack M, Shen Y. <b>Spatio-temporal graph mixformer for traffic forecasting[J]</b>. Expert Systems with Applications, 2023, 228: 120281. Link Code
  • Zhao J, Zhang R, Sun Q, et al. <b>Adaptive graph convolutional network-based short-term passenger flow prediction for metro[J]</b>. Journal of Intelligent Transportation Systems, 2023: 1-10. Link
  • Chen Y, Qin Y, Li K, et al. <b>Adaptive Spatial-Temporal Graph Convolution Networks for Collaborative Local-Global Learning in Traffic Prediction[J]</b>. IEEE Transactions on Vehicular Technology, 2023. Link
  • Wang B, Gao F, Tong L, et al. <b>Channel attention-based spatial-temporal graph neural networks for traffic prediction[J]</b>. Data Technologies and Applications, 2023. Link
  • Cao Y, Liu L, Dong Y. <b>Convolutional Long Short-Term Memory Two-Dimensional Bidirectional Graph Convolutional Network for Taxi Demand Prediction[J]</b>. Sustainability, 2023, 15(10): 7903. Link
  • Zhao T, Huang Z, Tu W, et al. <b>Developing a multiview spatiotemporal model based on deep graph neural networks to predict the travel demand by bus[J]</b>. International Journal of Geographical Information Science, 2023: 1-27. Link
  • Karim S, Mehmud M, Alamgir Z, et al. <b>Dynamic Spatial Correlation in Graph WaveNet for Road Traffic Prediction[J]</b>. Transportation Research Record, 2023: 03611981221151024. Link
  • Yue W, Zhou D, Wang S, et al. <b>Engineering Traffic Prediction With Online Data Imputation: A Graph-Theoretic Perspective[J]</b>. IEEE Systems Journal, 2023. Link
  • Feng X, Chen Y, Li H, et al. <b>Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction[J]</b>. Sustainability, 2023, 15(9): 7696.

编辑推荐精选

问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多