This is an updating survey for Bayesian Deep Learning (BDL), an constantly updated and extended version for the manuscript, 'A Survey on Bayesian Deep Learning', published in ACM Computing Surveys 2020.<br>
Bayesian deep learning is a powerful framework for designing models across a wide range of applications. See our Nature Medicine paper for a possible application on healthcare.
A Survey on Bayesian Deep Learning<br> by Wang et al., ACM Computing Surveys (CSUR) 2020<br> [PDF] [Blog] [BDL Framework in 2016]
<p align="center"> <img src="./BDL_Table.png" alt="" data-canonical-src="./BDL_Table.png" width="930" height="580"/> </p>Collaborative Deep Learning for Recommender Systems<br> by Wang et al., KDD 2015<br> [PDF] [Project Page] [2014 Arxiv Version] [Code] [MXNet Code] [TensorFlow Code] [Dataset A] [Dataset B] [Jupyter Notebook] [Slides] [Slides (Long)]
Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks<br> by Wang et al., NIPS 2016<br> [PDF]
Collaborative Knowledge Base Embedding for Recommender Systems<br> by Zhang et al., KDD 2016<br> [PDF]
Collaborative Deep Ranking: A Hybrid Pair-Wise Recommendation Algorithm with Implicit Feedback<br> by Ying et al., PAKDD 2016<br> [PDF]
Collaborative Variational Autoencoder for Recommender Systems<br> by Li et al., KDD 2017<br> [PDF]
Variational Autoencoders for Collaborative Filtering<br> by Liang et al., WWW 2018<br> [PDF]
Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation<br> by Ma et al., KDD 2020<br> [PDF]
Probabilistic Model-Agnostic Meta-Learning<br> by Finn et al., NIPS 2018<br> [PDF]
Bayesian Model-Agnostic Meta-Learning<br> by Yoon et al., NIPS 2018<br> [PDF]
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes<br> by Grant et al., ICLR 2018<br> [PDF]
Reconciling Meta-Learning and Continual Learning with Online Mixtures of Tasks<br> by Jerfal et al., NIPS 2019<br> [PDF]
Meta-Learning Probabilistic Inference For Prediction<br> by Gordon et al., ICLR 2019<br> [PDF]
Learning to Learn with Variational Information Bottleneck for Domain Generalization<br> by Du et al., ECCV 2020<br> [PDF]
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels<br> by Patacchiola et al., NIPS 2020<br> [PDF]
Continuously Indexed Domain Adaptation<br> by Wang et al., ICML 2020<br> [PDF]
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty<br> by Xiao et al., ICML 2021<br> [PDF]
Domain-Indexing Variational Bayes: Interpretable Domain Index for Domain Adaptation<br> by Xu et al., ICLR 2023<br> [PDF]
Electronic Health Record Analysis via Deep Poisson Factor Models<br> by Henao et al., JMLR 2016<br> [PDF]
Structured Inference Networks for Nonlinear State Space Models<br> by Krishnan et al., AAAI 2017<br> [PDF]
Causal Effect Inference with Deep Latent-Variable Models<br> by Louizos et al., NIPS 2017<br> [PDF]
Black Box FDR<br> by Tansey et al., ICML 2018<br> [PDF]
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling<br> by Wang et al., AAAI 2019<br> [PDF]
Sampling-free Uncertainty Estimation in Gated Recurrent Units with Applications to Normative Modeling in Neuroimaging<br> by Hwang et al., UAI 2019<br> [PDF]
Neural Jump Stochastic Differential Equations<br> by Jia et al., NIPS 2019<br> [PDF]
Towards Interpretable Clinical Diagnosis with Bayesian Network Ensembles Stacked on Entity-Aware CNNs<br> by Chen et al., ACL 2020<br> [PDF]
Continuously Indexed Domain Adaptation<br> by Wang et al., ICML 2020<br> [PDF] [Cross Referenced in BDL and Domain Adaptation]
Assessment of medication self-administration using artificial intelligence<br> by Zhao et al., Nature Medicine 2021<br> [PDF]
Neural Pharmacodynamic State Space Modeling<br> by Hussain et al., ICML 2021<br> [PDF]
Self-Interpretable Time Series Prediction with Counterfactual Explanations<br> by Yan et al., ICML 2023<br> [PDF] [Cross Referenced in BDL and Forecasting (Time Series Analysis)]
Sequence to Better Sequence: Continuous Revision of Combinatorial Structures<br> by Mueller et al., ICML 2017<br> [PDF]
QuaSE: Sequence Editing under Quantifiable Guidance<br> by Liao et al., EMNLP 2018<br> [PDF]
Dispersed Exponential Family Mixture VAEs for Interpretable Text Generation<br> by Shi et al., ICML 2020<br> [PDF]
Towards Interpretable Clinical Diagnosis with Bayesian Network Ensembles Stacked on Entity-Aware CNNs<br> by Chen et al., ACL 2020<br> [PDF] [Cross Referenced in BDL and Healthcare]
What You Say and How You Say it: Joint Modeling of Topics and Discourse in Microblog Conversations<br> by Zeng et al., ACL 2020<br> [PDF]
Latent Diffusion Energy-Based Model for Interpretable Text Modeling<br> by Yu et al., ICML 2022<br> [PDF]
Diffusion-LM Improves Controllable Text Generation<br> by Li et al., NeurIPS 2022<br> [PDF]
Tractable Control for Autoregressive Language Generation<br> by Zhang et al., ICML 2023<br> [PDF]
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models<br> by Eslami et al., NIPS 2016<br> [PDF]
Efficient Inference in Occlusion-aware Generative Models of Images<br> by Huang et al., ICLR 2016<br> [PDF]
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects<br> by Kosiorek et al., NIPS 2018<br> [PDF]
Gaussian Process Prior Variational Autoencoders<br> by Casale et al., NIPS 2018<br> [PDF]
Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks<br> by Crawford et al., AAAI 2019<br> [PDF]
Faster Attend-Infer-Repeat with Tractable Probabilistic Models<br> by Stelzner et al., ICML 2019<br> [PDF]
Asynchronous Temporal Fields for Action Recognition<br> by Sigurdsson et al., CVPR 2017<br> [PDF]
Generalizing Eye Tracking with Bayesian Adversarial Learning<br> by Wang et al., CVPR 2019<br> [PDF]
Sequential Neural Processes<br> by Singh et al., NIPS 2019<br> [PDF]
SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition<br> by Lin et al., ICLR 2020<br> [PDF]
Being Bayesian about Categorical Probability<br> by Joo et al., ICML 2020<br> [PDF]
NVAE: A Deep Hierarchical Variational Autoencoder<br> by Vahdat et al., NIPS 2020<br> [PDF]
Learning Latent Space Energy-Based Prior Model<br> by Pang et al., NIPS 2020<br> [PDF]
Generative Neurosymbolic Machines<br> by Jiang et al., NIPS 2020<br> [PDF]
Denoising Diffusion Probabilistic Models<br> by Ho et al., NIPS 2020<br> [PDF]
A Causal View of Compositional Zero-shot Recognition<br> by Atzmon et al., NIPS 2020<br> [PDF]
Counterfactuals Uncover the Modular Structure of Deep Generative Models<br> by Besserve et al., ICLR 2020<br> [PDF]
ROOTS: Object-Centric Representation and Rendering of 3D Scenes<br> by Chen et al., JMLR 2021<br> [PDF]
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生 活工作无缝切换,提升50%效率!
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号