This is an updating survey for Bayesian Deep Learning (BDL), an constantly updated and extended version for the manuscript, 'A Survey on Bayesian Deep Learning', published in ACM Computing Surveys 2020.<br>
Bayesian deep learning is a powerful framework for designing models across a wide range of applications. See our Nature Medicine paper for a possible application on healthcare.
A Survey on Bayesian Deep Learning<br> by Wang et al., ACM Computing Surveys (CSUR) 2020<br> [PDF] [Blog] [BDL Framework in 2016]
<p align="center"> <img src="./BDL_Table.png" alt="" data-canonical-src="./BDL_Table.png" width="930" height="580"/> </p>Collaborative Deep Learning for Recommender Systems<br> by Wang et al., KDD 2015<br> [PDF] [Project Page] [2014 Arxiv Version] [Code] [MXNet Code] [TensorFlow Code] [Dataset A] [Dataset B] [Jupyter Notebook] [Slides] [Slides (Long)]
Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks<br> by Wang et al., NIPS 2016<br> [PDF]
Collaborative Knowledge Base Embedding for Recommender Systems<br> by Zhang et al., KDD 2016<br> [PDF]
Collaborative Deep Ranking: A Hybrid Pair-Wise Recommendation Algorithm with Implicit Feedback<br> by Ying et al., PAKDD 2016<br> [PDF]
Collaborative Variational Autoencoder for Recommender Systems<br> by Li et al., KDD 2017<br> [PDF]
Variational Autoencoders for Collaborative Filtering<br> by Liang et al., WWW 2018<br> [PDF]
Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation<br> by Ma et al., KDD 2020<br> [PDF]
Probabilistic Model-Agnostic Meta-Learning<br> by Finn et al., NIPS 2018<br> [PDF]
Bayesian Model-Agnostic Meta-Learning<br> by Yoon et al., NIPS 2018<br> [PDF]
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes<br> by Grant et al., ICLR 2018<br> [PDF]
Reconciling Meta-Learning and Continual Learning with Online Mixtures of Tasks<br> by Jerfal et al., NIPS 2019<br> [PDF]
Meta-Learning Probabilistic Inference For Prediction<br> by Gordon et al., ICLR 2019<br> [PDF]
Learning to Learn with Variational Information Bottleneck for Domain Generalization<br> by Du et al., ECCV 2020<br> [PDF]
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels<br> by Patacchiola et al., NIPS 2020<br> [PDF]
Continuously Indexed Domain Adaptation<br> by Wang et al., ICML 2020<br> [PDF]
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty<br> by Xiao et al., ICML 2021<br> [PDF]
Domain-Indexing Variational Bayes: Interpretable Domain Index for Domain Adaptation<br> by Xu et al., ICLR 2023<br> [PDF]
Electronic Health Record Analysis via Deep Poisson Factor Models<br> by Henao et al., JMLR 2016<br> [PDF]
Structured Inference Networks for Nonlinear State Space Models<br> by Krishnan et al., AAAI 2017<br> [PDF]
Causal Effect Inference with Deep Latent-Variable Models<br> by Louizos et al., NIPS 2017<br> [PDF]
Black Box FDR<br> by Tansey et al., ICML 2018<br> [PDF]
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling<br> by Wang et al., AAAI 2019<br> [PDF]
Sampling-free Uncertainty Estimation in Gated Recurrent Units with Applications to Normative Modeling in Neuroimaging<br> by Hwang et al., UAI 2019<br> [PDF]
Neural Jump Stochastic Differential Equations<br> by Jia et al., NIPS 2019<br> [PDF]
Towards Interpretable Clinical Diagnosis with Bayesian Network Ensembles Stacked on Entity-Aware CNNs<br> by Chen et al., ACL 2020<br> [PDF]
Continuously Indexed Domain Adaptation<br> by Wang et al., ICML 2020<br> [PDF] [Cross Referenced in BDL and Domain Adaptation]
Assessment of medication self-administration using artificial intelligence<br> by Zhao et al., Nature Medicine 2021<br> [PDF]
Neural Pharmacodynamic State Space Modeling<br> by Hussain et al., ICML 2021<br> [PDF]
Self-Interpretable Time Series Prediction with Counterfactual Explanations<br> by Yan et al., ICML 2023<br> [PDF] [Cross Referenced in BDL and Forecasting (Time Series Analysis)]
Sequence to Better Sequence: Continuous Revision of Combinatorial Structures<br> by Mueller et al., ICML 2017<br> [PDF]
QuaSE: Sequence Editing under Quantifiable Guidance<br> by Liao et al., EMNLP 2018<br> [PDF]
Dispersed Exponential Family Mixture VAEs for Interpretable Text Generation<br> by Shi et al., ICML 2020<br> [PDF]
Towards Interpretable Clinical Diagnosis with Bayesian Network Ensembles Stacked on Entity-Aware CNNs<br> by Chen et al., ACL 2020<br> [PDF] [Cross Referenced in BDL and Healthcare]
What You Say and How You Say it: Joint Modeling of Topics and Discourse in Microblog Conversations<br> by Zeng et al., ACL 2020<br> [PDF]
Latent Diffusion Energy-Based Model for Interpretable Text Modeling<br> by Yu et al., ICML 2022<br> [PDF]
Diffusion-LM Improves Controllable Text Generation<br> by Li et al., NeurIPS 2022<br> [PDF]
Tractable Control for Autoregressive Language Generation<br> by Zhang et al., ICML 2023<br> [PDF]
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models<br> by Eslami et al., NIPS 2016<br> [PDF]
Efficient Inference in Occlusion-aware Generative Models of Images<br> by Huang et al., ICLR 2016<br> [PDF]
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects<br> by Kosiorek et al., NIPS 2018<br> [PDF]
Gaussian Process Prior Variational Autoencoders<br> by Casale et al., NIPS 2018<br> [PDF]
Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks<br> by Crawford et al., AAAI 2019<br> [PDF]
Faster Attend-Infer-Repeat with Tractable Probabilistic Models<br> by Stelzner et al., ICML 2019<br> [PDF]
Asynchronous Temporal Fields for Action Recognition<br> by Sigurdsson et al., CVPR 2017<br> [PDF]
Generalizing Eye Tracking with Bayesian Adversarial Learning<br> by Wang et al., CVPR 2019<br> [PDF]
Sequential Neural Processes<br> by Singh et al., NIPS 2019<br> [PDF]
SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition<br> by Lin et al., ICLR 2020<br> [PDF]
Being Bayesian about Categorical Probability<br> by Joo et al., ICML 2020<br> [PDF]
NVAE: A Deep Hierarchical Variational Autoencoder<br> by Vahdat et al., NIPS 2020<br> [PDF]
Learning Latent Space Energy-Based Prior Model<br> by Pang et al., NIPS 2020<br> [PDF]
Generative Neurosymbolic Machines<br> by Jiang et al., NIPS 2020<br> [PDF]
Denoising Diffusion Probabilistic Models<br> by Ho et al., NIPS 2020<br> [PDF]
A Causal View of Compositional Zero-shot Recognition<br> by Atzmon et al., NIPS 2020<br> [PDF]
Counterfactuals Uncover the Modular Structure of Deep Generative Models<br> by Besserve et al., ICLR 2020<br> [PDF]
ROOTS: Object-Centric Representation and Rendering of 3D Scenes<br> by Chen et al., JMLR 2021<br> [PDF]


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳 定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号