This is an updating survey for Bayesian Deep Learning (BDL), an constantly updated and extended version for the manuscript, 'A Survey on Bayesian Deep Learning', published in ACM Computing Surveys 2020.<br>
Bayesian deep learning is a powerful framework for designing models across a wide range of applications. See our Nature Medicine paper for a possible application on healthcare.
A Survey on Bayesian Deep Learning<br> by Wang et al., ACM Computing Surveys (CSUR) 2020<br> [PDF] [Blog] [BDL Framework in 2016]
<p align="center"> <img src="./BDL_Table.png" alt="" data-canonical-src="./BDL_Table.png" width="930" height="580"/> </p>Collaborative Deep Learning for Recommender Systems<br> by Wang et al., KDD 2015<br> [PDF] [Project Page] [2014 Arxiv Version] [Code] [MXNet Code] [TensorFlow Code] [Dataset A] [Dataset B] [Jupyter Notebook] [Slides] [Slides (Long)]
Collaborative Recurrent Autoencoder: Recommend while Learning to Fill in the Blanks<br> by Wang et al., NIPS 2016<br> [PDF]
Collaborative Knowledge Base Embedding for Recommender Systems<br> by Zhang et al., KDD 2016<br> [PDF]
Collaborative Deep Ranking: A Hybrid Pair-Wise Recommendation Algorithm with Implicit Feedback<br> by Ying et al., PAKDD 2016<br> [PDF]
Collaborative Variational Autoencoder for Recommender Systems<br> by Li et al., KDD 2017<br> [PDF]
Variational Autoencoders for Collaborative Filtering<br> by Liang et al., WWW 2018<br> [PDF]
Probabilistic Metric Learning with Adaptive Margin for Top-K Recommendation<br> by Ma et al., KDD 2020<br> [PDF]
Probabilistic Model-Agnostic Meta-Learning<br> by Finn et al., NIPS 2018<br> [PDF]
Bayesian Model-Agnostic Meta-Learning<br> by Yoon et al., NIPS 2018<br> [PDF]
Recasting Gradient-Based Meta-Learning as Hierarchical Bayes<br> by Grant et al., ICLR 2018<br> [PDF]
Reconciling Meta-Learning and Continual Learning with Online Mixtures of Tasks<br> by Jerfal et al., NIPS 2019<br> [PDF]
Meta-Learning Probabilistic Inference For Prediction<br> by Gordon et al., ICLR 2019<br> [PDF]
Learning to Learn with Variational Information Bottleneck for Domain Generalization<br> by Du et al., ECCV 2020<br> [PDF]
Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels<br> by Patacchiola et al., NIPS 2020<br> [PDF]
Continuously Indexed Domain Adaptation<br> by Wang et al., ICML 2020<br> [PDF]
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty<br> by Xiao et al., ICML 2021<br> [PDF]
Domain-Indexing Variational Bayes: Interpretable Domain Index for Domain Adaptation<br> by Xu et al., ICLR 2023<br> [PDF]
Electronic Health Record Analysis via Deep Poisson Factor Models<br> by Henao et al., JMLR 2016<br> [PDF]
Structured Inference Networks for Nonlinear State Space Models<br> by Krishnan et al., AAAI 2017<br> [PDF]
Causal Effect Inference with Deep Latent-Variable Models<br> by Louizos et al., NIPS 2017<br> [PDF]
Black Box FDR<br> by Tansey et al., ICML 2018<br> [PDF]
Bidirectional Inference Networks: A Class of Deep Bayesian Networks for Health Profiling<br> by Wang et al., AAAI 2019<br> [PDF]
Sampling-free Uncertainty Estimation in Gated Recurrent Units with Applications to Normative Modeling in Neuroimaging<br> by Hwang et al., UAI 2019<br> [PDF]
Neural Jump Stochastic Differential Equations<br> by Jia et al., NIPS 2019<br> [PDF]
Towards Interpretable Clinical Diagnosis with Bayesian Network Ensembles Stacked on Entity-Aware CNNs<br> by Chen et al., ACL 2020<br> [PDF]
Continuously Indexed Domain Adaptation<br> by Wang et al., ICML 2020<br> [PDF] [Cross Referenced in BDL and Domain Adaptation]
Assessment of medication self-administration using artificial intelligence<br> by Zhao et al., Nature Medicine 2021<br> [PDF]
Neural Pharmacodynamic State Space Modeling<br> by Hussain et al., ICML 2021<br> [PDF]
Self-Interpretable Time Series Prediction with Counterfactual Explanations<br> by Yan et al., ICML 2023<br> [PDF] [Cross Referenced in BDL and Forecasting (Time Series Analysis)]
Sequence to Better Sequence: Continuous Revision of Combinatorial Structures<br> by Mueller et al., ICML 2017<br> [PDF]
QuaSE: Sequence Editing under Quantifiable Guidance<br> by Liao et al., EMNLP 2018<br> [PDF]
Dispersed Exponential Family Mixture VAEs for Interpretable Text Generation<br> by Shi et al., ICML 2020<br> [PDF]
Towards Interpretable Clinical Diagnosis with Bayesian Network Ensembles Stacked on Entity-Aware CNNs<br> by Chen et al., ACL 2020<br> [PDF] [Cross Referenced in BDL and Healthcare]
What You Say and How You Say it: Joint Modeling of Topics and Discourse in Microblog Conversations<br> by Zeng et al., ACL 2020<br> [PDF]
Latent Diffusion Energy-Based Model for Interpretable Text Modeling<br> by Yu et al., ICML 2022<br> [PDF]
Diffusion-LM Improves Controllable Text Generation<br> by Li et al., NeurIPS 2022<br> [PDF]
Tractable Control for Autoregressive Language Generation<br> by Zhang et al., ICML 2023<br> [PDF]
Attend, Infer, Repeat: Fast Scene Understanding with Generative Models<br> by Eslami et al., NIPS 2016<br> [PDF]
Efficient Inference in Occlusion-aware Generative Models of Images<br> by Huang et al., ICLR 2016<br> [PDF]
Sequential Attend, Infer, Repeat: Generative Modelling of Moving Objects<br> by Kosiorek et al., NIPS 2018<br> [PDF]
Gaussian Process Prior Variational Autoencoders<br> by Casale et al., NIPS 2018<br> [PDF]
Spatially Invariant Unsupervised Object Detection with Convolutional Neural Networks<br> by Crawford et al., AAAI 2019<br> [PDF]
Faster Attend-Infer-Repeat with Tractable Probabilistic Models<br> by Stelzner et al., ICML 2019<br> [PDF]
Asynchronous Temporal Fields for Action Recognition<br> by Sigurdsson et al., CVPR 2017<br> [PDF]
Generalizing Eye Tracking with Bayesian Adversarial Learning<br> by Wang et al., CVPR 2019<br> [PDF]
Sequential Neural Processes<br> by Singh et al., NIPS 2019<br> [PDF]
SPACE: Unsupervised Object-Oriented Scene Representation via Spatial Attention and Decomposition<br> by Lin et al., ICLR 2020<br> [PDF]
Being Bayesian about Categorical Probability<br> by Joo et al., ICML 2020<br> [PDF]
NVAE: A Deep Hierarchical Variational Autoencoder<br> by Vahdat et al., NIPS 2020<br> [PDF]
Learning Latent Space Energy-Based Prior Model<br> by Pang et al., NIPS 2020<br> [PDF]
Generative Neurosymbolic Machines<br> by Jiang et al., NIPS 2020<br> [PDF]
Denoising Diffusion Probabilistic Models<br> by Ho et al., NIPS 2020<br> [PDF]
A Causal View of Compositional Zero-shot Recognition<br> by Atzmon et al., NIPS 2020<br> [PDF]
Counterfactuals Uncover the Modular Structure of Deep Generative Models<br> by Besserve et al., ICLR 2020<br> [PDF]
ROOTS: Object-Centric Representation and Rendering of 3D Scenes<br> by Chen et al., JMLR 2021<br> [PDF]


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商 拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频