Ollama interfaces for Neovim: get up and running with large language models locally in Neovim.
https://github.com/jpmcb/nvim-llama/assets/23109390/3e9e7248-dcf4-4349-8ee2-fd87ac3838ca
🏗️ 👷 Warning! Under active development!! 👷 🚧
Docker is required to use nvim-llama.
And that's it! All models and clients run from within Docker to provide chat interfaces and functionality. This is an agnostic approach that works for MacOS, Linux, and Windows.
Use your favorite package manager to install the plugin:
use 'jpmcb/nvim-llama'
{ 'jpmcb/nvim-llama' }
Plug 'jpmcb/nvim-llama'
In your init.vim, setup the plugin:
require('nvim-llama').setup {}
You can provide the following optional configuration table to the setup function:
local defaults = { -- See plugin debugging logs debug = false, -- The model for ollama to use. This model will be automatically downloaded. model = llama2, }
Ollama supports an incredible number of open-source models available on ollama.ai/library
Check out their docs to learn more: https://github.com/jmorganca/ollama
When setting the model setting, the specified model will be automatically downloaded:
| Model | Parameters | Size | Model setting |
|---|---|---|---|
| Neural Chat | 7B | 4.1GB | model = neural-chat |
| Starling | 7B | 4.1GB | model = starling-lm |
| Mistral | 7B | 4.1GB | model = mistral |
| Llama 2 | 7B | 3.8GB | model = llama2 |
| Code Llama | 7B | 3.8GB | model = codellama |
| Llama 2 Uncensored | 7B | 3.8GB | model = llama2-uncensored |
| Llama 2 13B | 13B | 7.3GB | model = llama2:13b |
| Llama 2 70B | 70B | 39GB | model = llama2:70b |
| Orca Mini | 3B | 1.9GB | model = orca-mini |
| Vicuna | 7B | 3.8GB | model = vicuna |
Note: You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models. 70B parameter models require upwards of 64 GB of ram (if not more).
The :Llama autocommand opens a Terminal window where you can start chatting with your LLM.
To exit Terminal mode, which by default locks the focus to the terminal buffer, use the bindings Ctrl-\ Ctrl-n


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

