chat-miner

chat-miner

多平台聊天记录解析与可视化工具

chat-miner是一款开源的聊天记录解析和可视化工具。该工具支持WhatsApp、Signal、Telegram等主流平台的聊天记录解析,能够将聊天内容转换为结构化数据。chat-miner提供多种可视化功能,包括日历热图、旭日图和词云等,方便用户探索聊天数据并创建可视化作品。此外,该工具还集成了情感分析等自然语言处理功能,有助于深入分析聊天内容。chat-miner安装简便,支持命令行操作,适用于聊天数据分析和创意可视化领域。

chat-miner聊天数据分析数据可视化自然语言处理开源项目Github
<picture> <source media="(prefers-color-scheme: dark)" srcset="doc/_static/logo-wide-dark.png"> <source media="(prefers-color-scheme: light)" srcset="doc/_static/logo-wide-light.png"> <img alt="chat-miner: turn your chats into artwork" src="doc/_static/logo-wide-light.png"> </picture>

chat-miner: turn your chats into artwork

PyPI Version License: MIT Downloads codecov Code style: black


chat-miner provides lean parsers for every major platform transforming chats into dataframes. Artistic visualizations allow you to explore your data and create artwork from your chats.

1. Installation

Latest release including dependencies can be installed via PyPI:

pip install chat-miner

If you're interested in contributing, running the latest source code, or just like to build everything yourself:

git clone https://github.com/joweich/chat-miner.git cd chat-miner pip install -r requirements.txt

2. Exporting chat logs

Have a look at the official tutorials for WhatsApp, Signal, Telegram, Facebook Messenger, or Instagram Chats to learn how to export chat logs for your platform.

3. Parsing

Following code showcases the WhatsAppParser module. The usage of SignalParser, TelegramJsonParser, FacebookMessengerParser, and InstagramJsonParser follows the same pattern.

from chatminer.chatparsers import WhatsAppParser parser = WhatsAppParser(FILEPATH) parser.parse_file() df = parser.parsed_messages.get_df(as_pandas=True) # as_pandas=False returns polars dataframe

Note: Depending on your source system, Python requires to convert the filepath to a raw string.

import os FILEPATH = r"C:\Users\Username\chat.txt" # Windows FILEPATH = "/home/username/chat.txt" # Unix assert os.path.isfile(FILEPATH)

4. Visualizing

import chatminer.visualizations as vis import matplotlib.pyplot as plt

4.1 Heatmap: Message count per day

fig, ax = plt.subplots(2, 1, figsize=(9, 3)) ax[0] = vis.calendar_heatmap(df, year=2020, cmap='Oranges', ax=ax[0]) ax[1] = vis.calendar_heatmap(df, year=2021, linewidth=0, monthly_border=True, ax=ax[1])
<p align="center"> <img src="examples/heatmap.svg"> </p>

4.2 Sunburst: Message count per daytime

fig, ax = plt.subplots(1, 2, figsize=(7, 3), subplot_kw={'projection': 'polar'}) ax[0] = vis.sunburst(df, highlight_max=True, isolines=[2500, 5000], isolines_relative=False, ax=ax[0]) ax[1] = vis.sunburst(df, highlight_max=False, isolines=[0.5, 1], color='C1', ax=ax[1])
<p align="center"> <img src="examples/sunburst.svg"> </p>

4.3 Wordcloud: Word frequencies

fig, ax = plt.subplots(figsize=(8, 3)) stopwords = ['these', 'are', 'stopwords'] kwargs={"background_color": "white", "width": 800, "height": 300, "max_words": 500} ax = vis.wordcloud(df, ax=ax, stopwords=stopwords, **kwargs)
<p align="center"> <img src="examples/wordcloud.svg"> </p>

4.4 Radarchart: Message count per weekday

if not vis.is_radar_registered(): vis.radar_factory(7, frame="polygon") fig, ax = plt.subplots(1, 2, figsize=(7, 3), subplot_kw={'projection': 'radar'}) ax[0] = vis.radar(df, ax=ax[0]) ax[1] = vis.radar(df, ax=ax[1], color='C1', alpha=0)
<p align="center"> <img src="examples/radar.svg"> </p>

5. Natural Language Processing

5.1 Add Sentiment

from chatminer.nlp import add_sentiment df_sentiment = add_sentiment(df)

5.2 Example Plot: Sentiment per Author in Groupchat

df_grouped = df_sentiment.groupby(['author', 'sentiment']).size().unstack(fill_value=0) ax = df_grouped.plot(kind='bar', stacked=True, figsize=(8, 3))
<p align="center"> <img src="examples/nlp.svg"> </p>

6. Command Line Interface

The CLI supports parsing chat logs into csv files. As of now, you can't create visualizations from the CLI directly.

Example usage:

$ chatminer -p whatsapp -i exportfile.txt -o output.csv

Usage guide:

usage: chatminer [-h] [-p {whatsapp,instagram,facebook,signal,telegram}] [-i INPUT] [-o OUTPUT]

options:
  -h, --help 
                        Show this help message and exit
  -p {whatsapp,instagram,facebook,signal,telegram}, --parser {whatsapp,instagram,facebook,signal,telegram}
                        The platform from which the chats are imported
  -i INPUT, --input INPUT
                        Input file to be processed
  -o OUTPUT, --output OUTPUT
                        Output file for the results

编辑推荐精选

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

下拉加载更多