Faker is a Python package that generates fake data for you. Whether you need to bootstrap your database, create good-looking XML documents, fill-in your persistence to stress test it, or anonymize data taken from a production service, Faker is for you.
Faker is heavily inspired by PHP Faker
, Perl Faker
, and by Ruby Faker
_.
::
_|_|_|_| _|
_| _|_|_| _| _| _|_| _| _|_|
_|_|_| _| _| _|_| _|_|_|_| _|_|
_| _| _| _| _| _| _|
_| _|_|_| _| _| _|_|_| _|
|pypi| |build| |coverage| |license|
Starting from version 4.0.0
, Faker
dropped support for Python 2 and from version 5.0.0
only supports Python 3.7 and above. If you still need Python 2 compatibility, please install version 3.0.1
in the
meantime, and please consider updating your codebase to support Python 3 so you can enjoy the
latest features Faker
has to offer. Please see the extended docs
_ for more details, especially
if you are upgrading from version 2.0.4
and below as there might be breaking changes.
This package was also previously called fake-factory
which was already deprecated by the end
of 2016, and much has changed since then, so please ensure that your project and its dependencies
do not depend on the old package.
Install with pip:
.. code:: bash
pip install Faker
Use faker.Faker()
to create and initialize a faker
generator, which can generate data by accessing properties named after
the type of data you want.
.. code:: python
from faker import Faker
fake = Faker()
fake.name()
# 'Lucy Cechtelar'
fake.address()
# '426 Jordy Lodge
# Cartwrightshire, SC 88120-6700'
fake.text()
# 'Sint velit eveniet. Rerum atque repellat voluptatem quia rerum. Numquam excepturi
# beatae sint laudantium consequatur. Magni occaecati itaque sint et sit tempore. Nesciunt
# amet quidem. Iusto deleniti cum autem ad quia aperiam.
# A consectetur quos aliquam. In iste aliquid et aut similique suscipit. Consequatur qui
# quaerat iste minus hic expedita. Consequuntur error magni et laboriosam. Aut aspernatur
# voluptatem sit aliquam. Dolores voluptatum est.
# Aut molestias et maxime. Fugit autem facilis quos vero. Eius quibusdam possimus est.
# Ea quaerat et quisquam. Deleniti sunt quam. Adipisci consequatur id in occaecati.
# Et sint et. Ut ducimus quod nemo ab voluptatum.'
Each call to method fake.name()
yields a different (random) result.
This is because faker forwards faker.Generator.method_name()
calls
to faker.Generator.format(method_name)
.
.. code:: python
for _ in range(10):
print(fake.name())
# 'Adaline Reichel'
# 'Dr. Santa Prosacco DVM'
# 'Noemy Vandervort V'
# 'Lexi O'Conner'
# 'Gracie Weber'
# 'Roscoe Johns'
# 'Emmett Lebsack'
# 'Keegan Thiel'
# 'Wellington Koelpin II'
# 'Ms. Karley Kiehn V'
Faker
also has its own pytest
plugin which provides a faker
fixture you can use in your
tests. Please check out the pytest fixture docs
to learn more.
Each of the generator properties (like name
, address
, and
lorem
) are called "fake". A faker generator has many of them,
packaged in "providers".
.. code:: python
from faker import Faker
from faker.providers import internet
fake = Faker()
fake.add_provider(internet)
print(fake.ipv4_private())
Check the extended docs
_ for a list of bundled providers
_ and a list of
community providers
_.
faker.Faker
can take a locale as an argument, to return localized
data. If no localized provider is found, the factory falls back to the
default LCID string for US english, ie: en_US
.
.. code:: python
from faker import Faker
fake = Faker('it_IT')
for _ in range(10):
print(fake.name())
# 'Elda Palumbo'
# 'Pacifico Giordano'
# 'Sig. Avide Guerra'
# 'Yago Amato'
# 'Eustachio Messina'
# 'Dott. Violante Lombardo'
# 'Sig. Alighieri Monti'
# 'Costanzo Costa'
# 'Nazzareno Barbieri'
# 'Max Coppola'
faker.Faker
also supports multiple locales. New in v3.0.0.
.. code:: python
from faker import Faker
fake = Faker(['it_IT', 'en_US', 'ja_JP'])
for _ in range(10):
print(fake.name())
# 鈴木 陽一
# Leslie Moreno
# Emma Williams
# 渡辺 裕美子
# Marcantonio Galuppi
# Martha Davis
# Kristen Turner
# 中津川 春香
# Ashley Castillo
# 山田 桃子
You can check available Faker locales in the source code, under the providers package. The localization of Faker is an ongoing process, for which we need your help. Please don't hesitate to create a localized provider for your own locale and submit a Pull Request (PR).
The Faker constructor takes a performance-related argument called
use_weighting
. It specifies whether to attempt to have the frequency
of values match real-world frequencies (e.g. the English name Gary would
be much more frequent than the name Lorimer). If use_weighting
is False
,
then all items have an equal chance of being selected, and the selection
process is much faster. The default is True
.
When installed, you can invoke faker from the command-line:
.. code:: console
faker [-h] [--version] [-o output]
[-l {bg_BG,cs_CZ,...,zh_CN,zh_TW}]
[-r REPEAT] [-s SEP]
[-i {package.containing.custom_provider otherpkg.containing.custom_provider}]
[fake] [fake argument [fake argument ...]]
Where:
faker
: is the script when installed in your environment, in
development you could use python -m faker
instead
-h
, --help
: shows a help message
--version
: shows the program's version number
-o FILENAME
: redirects the output to the specified filename
-l {bg_BG,cs_CZ,...,zh_CN,zh_TW}
: allows use of a localized
provider
-r REPEAT
: will generate a specified number of outputs
-s SEP
: will generate the specified separator after each
generated output
-i {my.custom_provider other.custom_provider}
list of additional custom
providers to use. Note that is the import path of the package containing
your Provider class, not the custom Provider class itself.
fake
: is the name of the fake to generate an output for, such as
name
, address
, or text
[fake argument ...]
: optional arguments to pass to the fake (e.g. the
profile fake takes an optional list of comma separated field names as the
first argument)
Examples:
.. code:: console
$ faker address
968 Bahringer Garden Apt. 722
Kristinaland, NJ 09890
$ faker -l de_DE address
Samira-Niemeier-Allee 56
94812 Biedenkopf
$ faker profile ssn,birthdate
{'ssn': '628-10-1085', 'birthdate': '2008-03-29'}
$ faker -r=3 -s=";" name
Willam Kertzmann;
Josiah Maggio;
Gayla Schmitt;
.. code:: python
from faker import Faker
fake = Faker()
# first, import a similar Provider or use the default one
from faker.providers import BaseProvider
# create new provider class
class MyProvider(BaseProvider):
def foo(self) -> str:
return 'bar'
# then add new provider to faker instance
fake.add_provider(MyProvider)
# now you can use:
fake.foo()
# 'bar'
Dynamic providers can read elements from an external source.
.. code:: python
from faker import Faker
from faker.providers import DynamicProvider
medical_professions_provider = DynamicProvider(
provider_name="medical_profession",
elements=["dr.", "doctor", "nurse", "surgeon", "clerk"],
)
fake = Faker()
# then add new provider to faker instance
fake.add_provider(medical_professions_provider)
# now you can use:
fake.medical_profession()
# 'dr.'
You can provide your own sets of words if you don't want to use the
default lorem ipsum one. The following example shows how to do it with a list of words picked from cakeipsum <http://www.cupcakeipsum.com/>
__ :
.. code:: python
from faker import Faker
fake = Faker()
my_word_list = [
'danish','cheesecake','sugar',
'Lollipop','wafer','Gummies',
'sesame','Jelly','beans',
'pie','bar','Ice','oat' ]
fake.sentence()
# 'Expedita at beatae voluptatibus nulla omnis.'
fake.sentence(ext_word_list=my_word_list)
# 'Oat beans oat Lollipop bar cheesecake.'
Factory Boy
already ships with integration with Faker
. Simply use the
factory.Faker
method of factory_boy
:
.. code:: python
import factory
from myapp.models import Book
class BookFactory(factory.Factory):
class Meta:
model = Book
title = factory.Faker('sentence', nb_words=4)
author_name = factory.Faker('name')
random
instanceThe .random
property on the generator returns the instance of
random.Random
used to generate the values:
.. code:: python
from faker import Faker
fake = Faker()
fake.random
fake.random.getstate()
By default all generators share the same instance of random.Random
, which
can be accessed with from faker.generator import random
. Using this may
be useful for plugins that want to affect all faker instances.
Through use of the .unique
property on the generator, you can guarantee
that any generated values are unique for this specific instance.
.. code:: python
from faker import Faker fake = Faker() names = [fake.unique.first_name() for i in range(500)] assert len(set(names)) == len(names)
Calling fake.unique.clear()
clears the already seen values.
Note, to avoid infinite loops, after a number of attempts to find a unique
value, Faker will throw a UniquenessException
. Beware of the birthday paradox <https://en.wikipedia.org/wiki/Birthday_problem>
_, collisions
are more likely than you'd think.
.. code:: python
from faker import Faker
fake = Faker() for i in range(3): # Raises a UniquenessException fake.unique.boolean()
In addition, only hashable arguments and return values can be used
with .unique
.
When using Faker for unit testing, you will often want to generate the same
data set. For convenience, the generator also provides a seed()
method,
which seeds the shared random number generator. A Seed produces the same result
when the same methods with the same version of faker are called.
.. code:: python
from faker import Faker
fake = Faker()
Faker.seed(4321)
print(fake.name())
# 'Margaret Boehm'
Each generator can also be switched to use its own instance of random.Random
,
separated from the shared one, by using the seed_instance()
method, which acts
the same way. For example:
.. code:: python
from faker import Faker
fake = Faker()
fake.seed_instance(4321)
print(fake.name())
# 'Margaret Boehm'
Please note that as we keep updating datasets, results are not guaranteed to be
consistent across patch versions. If you hardcode results in your test, make sure
you pinned the version of Faker
down to the patch number.
If you are using pytest
, you can seed the faker
fixture by defining a faker_seed
fixture. Please check out the pytest fixture docs
to learn more.
Run tests:
.. code:: bash
$ tox
Write documentation for the providers of the default locale:
.. code:: bash
$ python -m faker > docs.txt
Write documentation for the providers of a specific locale:
.. code:: bash
$ python -m faker --lang=de_DE > docs_de.txt
Please see CONTRIBUTING
_.
Faker is released under the MIT License. See the bundled LICENSE
_ file
for details.
FZaninotto
_ / PHP Faker
_Distribute
_Buildout
_modern-package-template
_.. _FZaninotto: https://github.com/fzaninotto .. _PHP Faker: https://github.com/fzaninotto/Faker .. _Perl Faker: http://search.cpan.org/~jasonk/Data-Faker-0.07/ .. _Ruby Faker: https://github.com/stympy/faker .. _Distribute: https://pypi.org/project/distribute/ .. _Buildout: http://www.buildout.org/ .. _modern-package-template: https://pypi.org/project/modern-package-template/ .. _extended docs: https://faker.readthedocs.io/en/stable/ .. _bundled providers: https://faker.readthedocs.io/en/stable/providers.html .. _community providers: https://faker.readthedocs.io/en/stable/communityproviders.html .. _pytest fixture docs: https://faker.readthedocs.io/en/master/pytest-fixtures.html .. _LICENSE: https://github.com/joke2k/faker/blob/master/LICENSE.txt .. _CONTRIBUTING: https://github.com/joke2k/faker/blob/master/CONTRIBUTING.rst .. _Factory Boy: https://github.com/FactoryBoy/factory_boy
.. |pypi| image:: https://img.shields.io/pypi/v/Faker.svg?style=flat-square&label=version :target: https://pypi.org/project/Faker/ :alt: Latest version released on PyPI
.. |coverage| image:: https://img.shields.io/coveralls/joke2k/faker/master.svg?style=flat-square :target: https://coveralls.io/r/joke2k/faker?branch=master :alt: Test coverage
.. |build| image:: https://github.com/joke2k/faker/actions/workflows/ci.yml/badge.svg :target: https://github.com/joke2k/faker/actions/workflows/ci.yml :alt: Build status of the master branch
.. |license| image:: https://img.shields.io/badge/license-MIT-blue.svg?style=flat-square :target: https://raw.githubusercontent.com/joke2k/faker/master/LICENSE.txt :alt: Package
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者 高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能, 适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型 生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号