JenkinsPipelineUnit

JenkinsPipelineUnit

Jenkins流水线代码单元测试框架

JenkinsPipelineUnit是针对Jenkins流水线代码的单元测试框架。它支持对Groovy Pipeline DSL编写的流水线进行配置和逻辑测试,提供Jenkins命令模拟、作业配置模拟、执行堆栈跟踪和回归测试等功能。该框架兼容Java 11+版本,可通过Maven或Gradle集成到项目中,方便开发人员进行流水线代码的自动化测试。

JenkinsPipeline单元测试Groovy持续集成Github开源项目

JenkinsPipelineUnit Testing Framework

Jenkins Pipeline Unit is a testing framework for unit testing Jenkins pipelines, written in Groovy Pipeline DSL.

Linux/Windows Build status Mac Build status GitHub release (latest SemVer) Gitter chat

If you use Jenkins as your CI workhorse (like us @ lesfurets.com) and you enjoy writing pipeline-as-code, you already know that pipeline code is very powerful but can get pretty complex.

This testing framework lets you write unit tests on the configuration and conditional logic of the pipeline code, by providing a mock execution of the pipeline. You can mock built-in Jenkins commands, job configurations, see the stacktrace of the whole execution and even track regressions.

Table of Contents

  1. Usage
  2. Configuration
  3. Declarative Pipeline
  4. Testing Shared Libraries
  5. Writing Testable Libraries
  6. Note On CPS
  7. Contributing
  8. Demos and Examples

Usage

Add to Your Project as Test Dependency

JenkinsPipelineUnit requires Java 11, since this is also the minimum version required by Jenkins. Also note that JenkinsPipelineUnit is not currently compatible with Groovy 4, please see this issue for more details.

Note: Starting from version 1.2, artifacts are published to https://repo.jenkins-ci.org/releases.

Maven

<repositories> <repository> <id>jenkins-ci-releases</id> <url>https://repo.jenkins-ci.org/releases/</url> </repository> ... </repositories> <dependencies> <dependency> <groupId>com.lesfurets</groupId> <artifactId>jenkins-pipeline-unit</artifactId> <version>1.9</version> <scope>test</scope> </dependency> ... </dependencies>

Gradle

repositories { maven { url 'https://repo.jenkins-ci.org/releases/' } ... } dependencies { testImplementation "com.lesfurets:jenkins-pipeline-unit:1.9" ... }

Start Writing Tests

You can write your tests in Groovy or Java, using the test framework you prefer. The easiest entry point is extending the abstract class BasePipelineTest, which initializes the framework with JUnit.

Let's say you wrote this awesome pipeline script, which builds and tests your project:

def execute() { node() { String utils = load 'src/test/jenkins/lib/utils.jenkins' String revision = stage('Checkout') { checkout scm return utils.currentRevision() } gitlabBuilds(builds: ['build', 'test']) { stage('build') { gitlabCommitStatus('build') { sh "mvn clean package -DskipTests -DgitRevision=$revision" } } stage('test') { gitlabCommitStatus('test') { sh "mvn verify -DgitRevision=$revision" } } } } } return this

Now using the Jenkins Pipeline Unit you can write a unit test to see if it does the job:

import com.lesfurets.jenkins.unit.BasePipelineTest class TestExampleJob extends BasePipelineTest { @Test void shouldExecuteWithoutErrors() { loadScript('job/exampleJob.jenkins').execute() printCallStack() } }

This test will print the call stack of the execution, which should look like so:

exampleJob.run() exampleJob.execute() exampleJob.node(groovy.lang.Closure) exampleJob.load(src/test/jenkins/lib/utils.jenkins) utils.run() exampleJob.stage(Checkout, groovy.lang.Closure) exampleJob.checkout({$class=GitSCM, branches=[{name=feature_test}], extensions=[], userRemoteConfigs=[{credentialsId=gitlab_git_ssh, url=github.com/lesfurets/JenkinsPipelineUnit.git}]}) utils.currentRevision() utils.sh({returnStdout=true, script=git rev-parse HEAD}) exampleJob.gitlabBuilds({builds=[build, test]}, groovy.lang.Closure) exampleJob.stage(build, groovy.lang.Closure) exampleJob.gitlabCommitStatus(build, groovy.lang.Closure) exampleJob.sh(mvn clean package -DskipTests -DgitRevision=bcc19744) exampleJob.stage(test, groovy.lang.Closure) exampleJob.gitlabCommitStatus(test, groovy.lang.Closure) exampleJob.sh(mvn verify -DgitRevision=bcc19744)

Mocking Jenkins Variables

You can define both environment variables and job execution parameters.

import com.lesfurets.jenkins.unit.BasePipelineTest class TestExampleJob extends BasePipelineTest { @Override @BeforeEach void setUp() { super.setUp() // Assigns false to a job parameter ENABLE_TEST_STAGE addParam('ENABLE_TEST_STAGE', 'false') // Assigns 1.0.0-rc.1 to the environment variable TAG_NAME addEnvVar('TAG_NAME', '1.0.0-rc.1') // Defines the previous execution status binding.getVariable('currentBuild').previousBuild = [result: 'UNSTABLE'] } @Test void verifyParam() { assertEquals('false', binding.getVariable('params')['ENABLE_TEST_STAGE']) } }

After calling super.setUp(), the test helper instance is available, as well as many helper methods. The test helper already provides basic variables such as a very simple currentBuild definition. You can redefine them as you wish.

Note that super.setUp() must be called prior to using most features. This is commonly done using your own setUp method, decorated with @Override and @BeforeEach.

Parameters added via addParam are immutable, which reflects the same behavior in Jenkins. Attempting to modify the params map in the binding will result in an error.

Mocking Jenkins Commands

You can register interceptors to mock pipeline methods, including Jenkins commands, which may or may not return a result.

import com.lesfurets.jenkins.unit.BasePipelineTest class TestExampleJob extends BasePipelineTest { @Override @BeforeEach void setUp() { super.setUp() helper.registerAllowedMethod('sh', [Map]) { args -> return 'bcc19744' } helper.registerAllowedMethod('timeout', [Map, Closure], null) helper.registerAllowedMethod('timestamps', []) { println 'Printing timestamp' } helper.registerAllowedMethod('myMethod', [String, int]) { String s, int i -> println "Executing myMethod mock with args: '${s}', '${i}'" } } }

The test helper already includes mocks for all base pipeline steps as well as a steps from a few widely-used plugins. You need to register allowed methods if you want to override these mocks and add others. Note that you need to provide a method signature and a callback (closure or lambda) in order to allow a method. Any method call which is not recognized will throw an exception.

Please refer to the BasePipelineTest class for the list of currently supported mocks.

Some tricky methods such as load and parallel are implemented directly in the helper. If you want to override those, make sure that you extend the PipelineTestHelper class.

Mocking readFile and fileExists

The readFile and fileExists steps can be mocked to return a specific result for a given file name. This can be useful for testing pipelines for which file operations can influence subsequent steps. An example of such a testing scenario follows:

// Jenkinsfile node { stage('Process output') { if (fileExists('output') && readFile('output') == 'FAILED!!!') { currentBuild.result = 'FAILURE' error 'Build failed' } } }
@Test void exampleReadFileTest() { helper.addFileExistsMock('output', true) helper.addReadFileMock('output', 'FAILED!!!') runScript('Jenkinsfile') assertJobStatusFailure() }

Mocking Shell Steps

The shell steps (sh, bat, etc) are used by many pipelines for a variety of tasks. They can be mocked to either (a) statically return:

  • A string for standard output
  • A return code

Or (b), to execute a closure that returns a Map (with stdout and exitValue entries). The closure will be executed when the shell is called, allowing for dynamic behavior.

Here is a sample pipeline and corresponding unit tests for each of these variants.

// Jenkinsfile node { stage('Mock build') { String systemType = sh(returnStdout: true, script: 'uname') if (systemType == 'Debian') { sh './build.sh --release' int status = sh(returnStatus: true, script: './test.sh') if (status > 0) { currentBuild.result = 'UNSTABLE' } else { def result = sh( returnStdout: true, script: './processTestResults.sh --platform debian', ) if (!result.endsWith('SUCCESS')) { currentBuild.result = 'FAILURE' error 'Build failed!' } } } } }
@Test void debianBuildSuccess() { helper.addShMock('uname', 'Debian', 0) helper.addShMock('./build.sh --release', '', 0) helper.addShMock('./test.sh', '', 0) // Have the sh mock execute the closure when the corresponding script is run: helper.addShMock('./processTestResults.sh --platform debian') { script -> // Do something "dynamically" first... return [stdout: "Executing ${script}: SUCCESS", exitValue: 0] } runScript("Jenkinsfile") assertJobStatusSuccess() } @Test void debianBuildUnstable() { helper.addShMock('uname', 'Debian', 0) helper.addShMock('./build.sh --release', '', 0) helper.addShMock('./test.sh', '', 1) runScript('Jenkinsfile') assertJobStatusUnstable() }

Note that in all cases, the script executed by sh must exactly match the string passed to helper.addShMock, including the script arguments, whitespace, etc. For more flexible matching, you can use a pattern (regular expression) and even capture groups:

helper.addShMock(~/.\/build.sh\s--(.*)/) { String script, String arg -> assert (arg == 'debug') || (arg == 'release') return [stdout: '', exitValue: 2] }

Also, mocks are stacked, so if two mocks match a call, the last one wins. Combined with a match-everything mock, you can tighten your tests a bit:

@BeforeEach void setUp() { super.setUp() helper = new PipelineTestHelper() // Basic `sh` mock setup: // - generate an error on unexpected calls // - ignore any echo (debug) outputs, they are not relevant // - all further shell mocks are configured in the test helper.addShMock() { throw new Exception('Unexpected sh call') } helper.addShMock(~/echo\s.*/, '', 0) }

Analyzing the Mock Execution

The helper registers every method call to provide a stacktrace of the mock execution.

@Test void shouldExecuteWithoutErrors() { runScript('Jenkinsfile') assertJobStatusSuccess() assertThat(helper.callStack.findAll { call -> call.methodName == 'sh' }.any { call -> callArgsToString(call).contains('mvn verify') }).isTrue() }

This will also check that mvn verify was called during the job execution.

Checking Pipeline Status

Let's say you have a simple script, and you'd like to check its behavior if a step fails.

// Jenkinsfile node() { git 'some_repo_url' sh 'make' }

You can mock the sh step to just update the pipeline status to FAILURE. To verify that your pipeline is failing, you need to check the status with BasePipelineTest.assertJobStatusFailure().

@Test void checkBuildStatus() { helper.registerAllowedMethod('sh', [String]) { cmd -> if (cmd == 'make') { binding.getVariable('currentBuild').result = 'FAILURE' } } runScript('Jenkinsfile') assertJobStatusFailure() }

Checking Pipeline Exceptions

Sometimes it is useful to verify that a specific exception was thrown during the pipeline run. JUnit 4 and 5 have slightly different mechanisms for doing this.

For both examples below, assume that the following pipeline is being tested:

To do so you can use org.junit.rules.ExpectedException

// Jenkinsfile node { throw new IllegalArgumentException('oh no!') }

JUnit 4

class TestCase extends BasePipelineTest { @Test(expected = IllegalArgumentException) void verifyException() { runScript('Jenkinsfile') } }

JUnit 5

import static org.junit.jupiter.api.Assertions.assertThrows class TestCase extends BasePipelineTest { @Test void verifyException() { assertThrows(IllegalArgumentException) { runScript('Jenkinsfile') } } }

Compare the Callstack with a Previous Implementation

One other use of the callstacks is to check your pipeline executions for possible regressions. You have a dedicated method you can call if you extend BaseRegressionTest:

@Test void testPipelineNonRegression() { loadScript('job/exampleJob.jenkins').execute() super.testNonRegression('example') }

This will compare the current callstack of the job to the one you have in a text callstack reference file. To update this file with new callstack, just set this JVM argument when running your tests: -Dpipeline.stack.write=true. You then can go ahead and commit this change in your SCM to check in the change.

Preserve Original Callstack Argument References

The default behavior of the callstack capture is to clone each call's arguments to preserve their values at time of the call should those arguments mutate downstream. That is a good guard when your scripts are passing ordinary mutable variables as arguments.

However, argument types that are not Cloneable are captured as String values. Most of the time this is a perfect fallback. But for some complex types, or for types that don't implement toString(), it can be tricky or impossible to validate the call values in a test.

Take the following simple example:

Map pretendArgsFromFarUpstream = [ foo: 'bar', foo2: 'more bar please', aNestedMap: [aa: 1, bb: 2], plusAList: [1, 2, 3, 4], ].asImmutable() node() { doSomethingWithThis(pretendArgsFromFarUpstream) }

pretendArgsFromFarUpstream is an immutable map and will be recorded as a String in the callstack. Your test may want to perform fine-grained validations via map key referencing instead of pattern matching or similar parsing. For example:

assertEquals(2, arg.aNestedMap.bb)

You may want to perform this kind of validation, particularly if your pipelines pass final and/or immutable variables as arguments. You can retain the direct reference to the variable in the callstack by setting this switch in your test setup:

helper.cloneArgsOnMethodCallRegistration = false

Running Inline Scripts

In case you want to have some script executed directly within a test case rather than creating a resource file for it, loadInlineScript and runInlineScript can be used.

@Test void testSomeScript() { Object script = loadInlineScript(''' node { stage('Build') { sh 'make' } } ''') script.execute() printCallStack() assertJobStatusSuccess() }

Note that inline scripts cannot be debugged via breakpoints as there is no file to attach to!

Configuration

The abstract class BasePipelineTest configures the helper with useful conventions:

  • It looks for pipeline scripts in your project in root (./.) and src/main/jenkins paths.
  • Jenkins pipelines let you load other scripts from a parent script with load command. However load takes the full path relative to the project root. The test helper mock successfully the load command to load the scripts. To make relative paths work, you need to configure the path of the project where your

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多