
物理信息机器学习在科学计算中的应用与进展
本项目聚焦物理信息神经网络(PINNs)、DeepONets和基于残差的注意力机制(RBA)等科学机器学习技术。内容涵盖从基础概念到高级应用的教程,包括函数逼近、ODE/PDE求解与发现等。项目呈现了PINNs领域的最新研究成果,尤其是RBA在提升性能方面的应用。这些资源对于物理信息机器学习领域的研究人员和工程师具有重要参考价值。
Hi, I’m Juan Diego Toscano. Thanks for stopping by.
This repository will help you to get involved in the physics-informed machine learning world. Inside the Tutorials folders, you will find several step-by-step guides on the basic concepts required to run and understand Physics-informed Machine Learning models (from approximating functions, solving and discovering ODE/PDEs with PINNs, to solving parametric PDEs with DeepONets).
Also, for advanced users, you can find our latest research in PINNs to achieve state-of-the-art performance using residual-based attention (RBA).
I reviewed some of these problems on my YouTube channel, so please watch them if you have time.
PINNs Youtube Tutorial:https://youtu.be/AXXnSzmpyoI
Inverse PINNs Youtube Tutorial: https://youtu.be/77jChHTcbv0
PI-DeepONets Youtube Tutorial:https://youtu.be/YpNYVD9B_Js
Also, if you are interested and PINNs and Machine Learning, please consider subscribing to the Crunch Group (Brown University) Youtube channel. They upload weekly seminars on Scientific Machine Learning.
https://www.youtube.com/channel/UC2ZZB80udkRvWQ4N3a8DOKQ
Note: The tutorials in this repository were taken from:
DeepXDE library: https://deepxde.readthedocs.io/en/latest/
PINNs Repository 1: https://github.com/omniscientoctopus/Physics-Informed-Neural-Networks/tree/main/PyTorch/Burgers'%20Equation
PINNs Repository 2: https://github.com/alexpapados/Physics-Informed-Deep-Learning-Solid-and-Fluid-Mechanics.
DeepOnets Repository 1: https://github.com/PredictiveIntelligenceLab/Physics-informed-DeepONets
Also here is our official implementation of RBA weights in PyTorch:
RBA Repository: https://github.com/soanagno/rba-pinns
[1] Anagnostopoulos, S. J., Toscano, J. D., Stergiopulos, N., & Karniadakis, G. E. (2024). Residual-based attention in physics-informed neural networks. Computer Methods in Applied Mechanics and Engineering, 421, 116805.
[2] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561. http://arxiv.org/pdf/1711.10561v1
[3] Lu, L., Meng, X., Mao, Z., & Karniadakis, G. E. (1907). DeepXDE: A deep learning library for solving differential equations,(2019). URL http://arxiv. org/abs/1907.04502. https://arxiv.org/abs/1907.04502
[4] Rackauckas Chris, Introduction to Scientific Machine Learning through Physics-Informed Neural Networks. https://book.sciml.ai/notes/03/
[5] Repository: Physics-Informed-Neural-Networks (PINNs).https://github.com/omniscientoctopus/Physics-Informed-Neural-Networks/tree/main/PyTorch/Burgers'%20Equation
[6] Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2017). Physics Informed Deep Learning (part ii): Data-driven Discovery of Nonlinear Partial Differential Equations. arXiv preprint arXiv:1711.10566. https://arxiv.org/abs/1711.10566
[7] Repository: Physics-Informed Deep Learning and its Application in Computational Solid and Fluid Mechanics.https://github.com/alexpapados/Physics-Informed-Deep-Learning-Solid-and-Fluid-Mechanics.
[8] Lu, L., Jin, P., & Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193.
[9] Wang, S., Wang, H., & Perdikaris, P. (2021). Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. Science advances, 7(40), eabi8605.


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号