西班牙语句子相似性与聚类分析的高效模型
该微调模型专注于西班牙语句子相似性任务,使用sentence-transformers框架,将语句转换为768维向量,支持语义搜索和聚类。便捷安装:通过pip获取sentence-transformers或使用HuggingFace Transformers进行高级处理。训练于西班牙语相似句子数据集,取得了80.1%的斯皮尔曼相关性。
all-MiniLM-L6-v2-similarity-es是一个基于sentence-transformers的项目,旨在将句子和段落映射到一个768维的稠密向量空间。这种模型非常适合用于聚类分析或语义搜索等任务。
这款模型主要处理西班牙语的句子相似度计算,使用了一组经过微调的句子转换器。模型的表示能力使其能够有效地将句子编码为向量,从而方便地进行比较。
要使用该模型,首先需要安装sentence-transformers
库。安装完成后,可以使用如下代码加载并应用模型:
pip install -U sentence-transformers from sentence_transformers import SentenceTransformer sentences = ["Esta es una frase para ser comparada", "Esta es otra oración"] model = SentenceTransformer('jaimevera1107/roberta-similarity-es') embeddings = model.encode(sentences) print(embeddings)
如果不使用sentence-transformers
库,也可以通过HuggingFace
的transformers
库来使用该模型。这需要手动实现池化操作以从上下文中正确计算词嵌入:
from transformers import AutoTokenizer, AutoModel import torch def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ["Esta es una frase para ser comparada", "Esta es otra oración"] tokenizer = AutoTokenizer.from_pretrained('jaimevera1107/roberta-similarity-es') model = AutoModel.from_pretrained('jaimevera1107/roberta-similarity-es') encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
在模型评估中,使用了R平方和Spearman相关系数进行衡量。微调后的Roberta模型在R平方上表现为70.67%,在Spearman相关上为80.1%,这些指标说明模型在句子相似度的捕捉上具备较强的能力。
模型的训练使用了西班牙语句子相似度数据集,训练过程中采用了CosineSimilarityLoss
损失函数。在5个训练周期中,采用的优化器为AdamW
,学习率设定为2e-05,并设置了权重衰减和学习率调度策略。
模型的整体架构包含两个主要部分之一是基于Roberta的Transformer模型,另一个是用于执行池化操作的Pooling模块。具体的架构如下:
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
通过这种结构,模型能够有效地从输入文本中提炼有意义的语义信息。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷 高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效 单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。