Algotrading Framework is a repository with tools to build and run working trading bots, backtest strategies, assist on trading, define simple stop losses and trailing stop losses, etc. This framework work with data directly from Crypto exchanges API, from a DB or CSV files. Can be used for data-driven and event-driven systems. Made exclusively for crypto markets for now and written in Python.
A Medium story dedicated to this project
Framework has three operating modes:
In realtime, Trading Bot operates in real-time, with live data from exchanges APIs. It doesn't need pre-stored data or DB to work. In this mode, a bot can trade real money, simulate or alert the user when its time to buy or sell, based on entry and exit strategies defined by the user. Can also simulate users strategies and present the results in real-time.
Tick-by-tick mode allows users to check strategies in a visible timeframe, to better check entries and exit points or to detect strategies faults or new entry and exit points. Use data from CSV files or DB.
Allows users to backtest strategies, with previously stored data. Can also plot trading data showing entry and exit points for implemented strategies.
To get algotrading fully working is necessary to install some packages and Python libs, as IPython, Pandas, Matplotlib, Numpy, Python-Influxdb and Python-tk. On Linux machines these packages could be installed with:
pip install -r requirements.txt
The first step is to collect data. To get markets data is necessary to run a DB, to get and manage all data or save the data to CSV files. There are two options:
Trading Bot is ready to operate with InfluxDB, but can work with other databases, with some small changes.
To install, configure and use a InfluxDB database, you can clone this repository: https://github.com/ivopetiz/crypto-database
If you don't want to install and manage any databases and simply want to get data to CSV files you can use the script in this Gist: https://gist.github.com/ivopetiz/051eb8dcef769e655254df21a093831a
Using a database is the best option, once you can analyse and plot data using DB tools, as Chronograf, and can always extract data to CSV if needed.
Entry functions aggregate all strategies to enter in a specific market. Once data fill all the requisites to enter a specific market, an action is taken. Users can use one or several functions in the same call, to fill the requisites and enter market/markets. Functions should return True, if the available data represent an entry point for the user. If not, the return needs to be False. <entry.py> should aggregate all users entry functions.
Function <cross_smas> will return True if first SMA cross the second one. If not will return False.
def cross_smas(data, smas=[5, 10]): ''' Checks if it's an entry point based on crossed smas. ''' if data.Last.rolling(smas[0]).mean().iloc[-1] > \ data.Last.rolling(smas[1]).mean().iloc[-1] and \ data.Last.rolling(smas[0]).mean().iloc[-2] < \ data.Last.rolling(smas[1]).mean().iloc[-2]: return True return False
Exit functions have all functions responsible for exit strategies. When a user is in the market, and data met exit criteria, the bot will exit the market. Exit functions can be used with other exit functions, to cover more situations, as used in entry functions. Stop loss and trailing stop loss are also implemented, to exit markets in case of an unexpected price drop. Functions should return True, if the available data represent an exit point for the user. If not, the return needs to be False. <exit.py> should aggregate all users' exit functions.
Function <cross_smas> will return True if first SMA cross the second one. If not will return False.
def cross_smas(data, smas=[10, 20]): ''' Checks if it's an exit point based on crossed smas. ''' if data.Last.rolling(smas[0]).mean().iloc[-1] < \ data.Last.rolling(smas[1]).mean().iloc[-1] and \ data.Last.rolling(smas[0]).mean().iloc[-2] > \ data.Last.rolling(smas[1]).mean().iloc[-2]: return True return False
It's possible to plot entry and exit points, among market data, using Matplotlib lib for Python with the option plot=True on function call.
Can log entry and exit points in order to evaluate strategies, presenting P&L for specific markets and total.
Here are some examples of how to use this framework.
To get an alert when a market doubles its volume:
from cryptoalgotrading.cryptoalgotrading import realtime def alert_volume_x2(data): if pd.vol.iloc[-1] > pd.vol.iloc[-2]*2: return True return False realtime([], alert_volume_x2, interval='10m')
alert_volume_x2 checks the value of actual market volume and compare it with the last time frame volume value, alerting user when actual market volume is bigger than last time frame volume value multiplied by 2. Can add functions live on IPython for example of add them to entry and exit python files.
To backtest a cross simple moving average strategy in a specific market and plot the entry points:
from cryptoalgotrading.cryptoalgotrading import backtest import cryptoalgotrading.entry as entry backtest(["BTC-XRP"], entry.cross_smas, smas=[15,40], interval='10m', from_file=True, plot=True)
Based on market data available for BTC_XRP pair, code above can present an output like this:
The figure has three charts. The chart on top presents on top BTC-XRP data from a certain period, with its Bollinger bands and 3 SMA lines. Green points represent the entry points for the defined strategy. In the middle is a chart representing volume data and at the bottom is represented the number of selling orders among time. All these fields and charts are configurable on plot function.
Can also add exit points by adding an exit function or functions to backtest function. It is possible to enter multiple entries and exit functions to backtest, to define different entry and exit positions.
Both functions are available on entry.py and exit.py as example.
In finance.py are some functions which could be useful to implement some strategies.
This Crypto AlgoTrading Framework can be used with Pypy, but the results will not be great, during the use of Pandas and Numpy libs.
API Key is just needed in case of buy/sell operations. For backtest, tick-by-tick and realtime alert implementations API Key can be left empty.
Buy and sell options are commented and should only be used if you know what you are doing.
If you are interested in using this bot and don't have an account on Binance Exchange yet, please help me, creating an account through my referral code here: https://accounts.binance.com/en/register?ref=17181609
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号