Algotrading Framework is a repository with tools to build and run working trading bots, backtest strategies, assist on trading, define simple stop losses and trailing stop losses, etc. This framework work with data directly from Crypto exchanges API, from a DB or CSV files. Can be used for data-driven and event-driven systems. Made exclusively for crypto markets for now and written in Python.
A Medium story dedicated to this project
Framework has three operating modes:
In realtime, Trading Bot operates in real-time, with live data from exchanges APIs. It doesn't need pre-stored data or DB to work. In this mode, a bot can trade real money, simulate or alert the user when its time to buy or sell, based on entry and exit strategies defined by the user. Can also simulate users strategies and present the results in real-time.
Tick-by-tick mode allows users to check strategies in a visible timeframe, to better check entries and exit points or to detect strategies faults or new entry and exit points. Use data from CSV files or DB.
Allows users to backtest strategies, with previously stored data. Can also plot trading data showing entry and exit points for implemented strategies.
To get algotrading fully working is necessary to install some packages and Python libs, as IPython, Pandas, Matplotlib, Numpy, Python-Influxdb and Python-tk. On Linux machines these packages could be installed with:
pip install -r requirements.txt
The first step is to collect data. To get markets data is necessary to run a DB, to get and manage all data or save the data to CSV files. There are two options:
Trading Bot is ready to operate with InfluxDB, but can work with other databases, with some small changes.
To install, configure and use a InfluxDB database, you can clone this repository: https://github.com/ivopetiz/crypto-database
If you don't want to install and manage any databases and simply want to get data to CSV files you can use the script in this Gist: https://gist.github.com/ivopetiz/051eb8dcef769e655254df21a093831a
Using a database is the best option, once you can analyse and plot data using DB tools, as Chronograf, and can always extract data to CSV if needed.
Entry functions aggregate all strategies to enter in a specific market. Once data fill all the requisites to enter a specific market, an action is taken. Users can use one or several functions in the same call, to fill the requisites and enter market/markets. Functions should return True, if the available data represent an entry point for the user. If not, the return needs to be False. <entry.py> should aggregate all users entry functions.
Function <cross_smas> will return True if first SMA cross the second one. If not will return False.
def cross_smas(data, smas=[5, 10]): ''' Checks if it's an entry point based on crossed smas. ''' if data.Last.rolling(smas[0]).mean().iloc[-1] > \ data.Last.rolling(smas[1]).mean().iloc[-1] and \ data.Last.rolling(smas[0]).mean().iloc[-2] < \ data.Last.rolling(smas[1]).mean().iloc[-2]: return True return False
Exit functions have all functions responsible for exit strategies. When a user is in the market, and data met exit criteria, the bot will exit the market. Exit functions can be used with other exit functions, to cover more situations, as used in entry functions. Stop loss and trailing stop loss are also implemented, to exit markets in case of an unexpected price drop. Functions should return True, if the available data represent an exit point for the user. If not, the return needs to be False. <exit.py> should aggregate all users' exit functions.
Function <cross_smas> will return True if first SMA cross the second one. If not will return False.
def cross_smas(data, smas=[10, 20]): ''' Checks if it's an exit point based on crossed smas. ''' if data.Last.rolling(smas[0]).mean().iloc[-1] < \ data.Last.rolling(smas[1]).mean().iloc[-1] and \ data.Last.rolling(smas[0]).mean().iloc[-2] > \ data.Last.rolling(smas[1]).mean().iloc[-2]: return True return False
It's possible to plot entry and exit points, among market data, using Matplotlib lib for Python with the option plot=True on function call.
Can log entry and exit points in order to evaluate strategies, presenting P&L for specific markets and total.
Here are some examples of how to use this framework.
To get an alert when a market doubles its volume:
from cryptoalgotrading.cryptoalgotrading import realtime def alert_volume_x2(data): if pd.vol.iloc[-1] > pd.vol.iloc[-2]*2: return True return False realtime([], alert_volume_x2, interval='10m')
alert_volume_x2 checks the value of actual market volume and compare it with the last time frame volume value, alerting user when actual market volume is bigger than last time frame volume value multiplied by 2. Can add functions live on IPython for example of add them to entry and exit python files.
To backtest a cross simple moving average strategy in a specific market and plot the entry points:
from cryptoalgotrading.cryptoalgotrading import backtest import cryptoalgotrading.entry as entry backtest(["BTC-XRP"], entry.cross_smas, smas=[15,40], interval='10m', from_file=True, plot=True)
Based on market data available for BTC_XRP pair, code above can present an output like this:

The figure has three charts. The chart on top presents on top BTC-XRP data from a certain period, with its Bollinger bands and 3 SMA lines. Green points represent the entry points for the defined strategy. In the middle is a chart representing volume data and at the bottom is represented the number of selling orders among time. All these fields and charts are configurable on plot function.
Can also add exit points by adding an exit function or functions to backtest function. It is possible to enter multiple entries and exit functions to backtest, to define different entry and exit positions.
Both functions are available on entry.py and exit.py as example.
In finance.py are some functions which could be useful to implement some strategies.
This Crypto AlgoTrading Framework can be used with Pypy, but the results will not be great, during the use of Pandas and Numpy libs.
API Key is just needed in case of buy/sell operations. For backtest, tick-by-tick and realtime alert implementations API Key can be left empty.
Buy and sell options are commented and should only be used if you know what you are doing.
If you are interested in using this bot and don't have an account on Binance Exchange yet, please help me, creating an account through my referral code here: https://accounts.binance.com/en/register?ref=17181609


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号