influxdb-client-python

influxdb-client-python

InfluxDB 2.x和Flux的Python客户端库

influxdb-client-python是InfluxDB 2.x和Flux的官方Python客户端库。该库支持数据写入和查询,具备同步、异步和批量写入功能,并能使用Flux语言进行灵活查询。它还包含InfluxDB 2.0 API客户端,可管理组织、用户和存储桶等。适用于Python 3.7+,提供详细文档和示例代码方便开发者使用。

InfluxDBPython客户端库时序数据库数据写入Github开源项目

influxdb-client-python

<!-- marker-index-start -->

CircleCI codecov CI status PyPI package Anaconda.org package Supported Python versions Documentation status Slack Status

This repository contains the Python client library for use with InfluxDB 2.x and Flux. InfluxDB 3.x users should instead use the lightweight v3 client library. InfluxDB 1.x users should use the v1 client library.

For ease of migration and a consistent query and write experience, v2 users should consider using InfluxQL and the v1 client library.

The API of the influxdb-client-python is not the backwards-compatible with the old one - influxdb-python.

Documentation

This section contains links to the client library documentation.

InfluxDB 2.0 client features

Installation

InfluxDB python library uses RxPY - The Reactive Extensions for Python (RxPY).

Python 3.7 or later is required.

:warning:

It is recommended to use ciso8601 with client for parsing dates. ciso8601 is much faster than built-in Python datetime. Since it's written as a C module the best way is build it from sources:

Windows:

You have to install Visual C++ Build Tools 2015 to build ciso8601 by pip.

conda:

Install from sources: conda install -c conda-forge/label/cf202003 ciso8601.

pip install

The python package is hosted on PyPI, you can install latest version directly:

pip install 'influxdb-client[ciso]'

Then import the package:

import influxdb_client

If your application uses async/await in Python you can install with the async extra:

$ pip install influxdb-client[async]

For more info see How to use Asyncio.

Setuptools

Install via Setuptools.

python setup.py install --user

(or sudo python setup.py install to install the package for all users)

Getting Started

Please follow the Installation and then run the following:

<!-- marker-query-start -->
from influxdb_client import InfluxDBClient, Point from influxdb_client.client.write_api import SYNCHRONOUS bucket = "my-bucket" client = InfluxDBClient(url="http://localhost:8086", token="my-token", org="my-org") write_api = client.write_api(write_options=SYNCHRONOUS) query_api = client.query_api() p = Point("my_measurement").tag("location", "Prague").field("temperature", 25.3) write_api.write(bucket=bucket, record=p) ## using Table structure tables = query_api.query('from(bucket:"my-bucket") |> range(start: -10m)') for table in tables: print(table) for row in table.records: print (row.values) ## using csv library csv_result = query_api.query_csv('from(bucket:"my-bucket") |> range(start: -10m)') val_count = 0 for row in csv_result: for cell in row: val_count += 1
<!-- marker-query-end -->

Client configuration

Via File

A client can be configured via *.ini file in segment influx2.

The following options are supported:

  • url - the url to connect to InfluxDB
  • org - default destination organization for writes and queries
  • token - the token to use for the authorization
  • timeout - socket timeout in ms (default value is 10000)
  • verify_ssl - set this to false to skip verifying SSL certificate when calling API from https server
  • ssl_ca_cert - set this to customize the certificate file to verify the peer
  • cert_file - path to the certificate that will be used for mTLS authentication
  • cert_key_file - path to the file contains private key for mTLS certificate
  • cert_key_password - string or function which returns password for decrypting the mTLS private key
  • connection_pool_maxsize - set the number of connections to save that can be reused by urllib3
  • auth_basic - enable http basic authentication when talking to a InfluxDB 1.8.x without authentication but is accessed via reverse proxy with basic authentication (defaults to false)
  • profilers - set the list of enabled Flux profilers
self.client = InfluxDBClient.from_config_file("config.ini")
[influx2] url=http://localhost:8086 org=my-org token=my-token timeout=6000 verify_ssl=False

Via Environment Properties

A client can be configured via environment properties.

Supported properties are:

  • INFLUXDB_V2_URL - the url to connect to InfluxDB
  • INFLUXDB_V2_ORG - default destination organization for writes and queries
  • INFLUXDB_V2_TOKEN - the token to use for the authorization
  • INFLUXDB_V2_TIMEOUT - socket timeout in ms (default value is 10000)
  • INFLUXDB_V2_VERIFY_SSL - set this to false to skip verifying SSL certificate when calling API from https server
  • INFLUXDB_V2_SSL_CA_CERT - set this to customize the certificate file to verify the peer
  • INFLUXDB_V2_CERT_FILE - path to the certificate that will be used for mTLS authentication
  • INFLUXDB_V2_CERT_KEY_FILE - path to the file contains private key for mTLS certificate
  • INFLUXDB_V2_CERT_KEY_PASSWORD - string or function which returns password for decrypting the mTLS private key
  • INFLUXDB_V2_CONNECTION_POOL_MAXSIZE - set the number of connections to save that can be reused by urllib3
  • INFLUXDB_V2_AUTH_BASIC - enable http basic authentication when talking to a InfluxDB 1.8.x without authentication but is accessed via reverse proxy with basic authentication (defaults to false)
  • INFLUXDB_V2_PROFILERS - set the list of enabled Flux profilers
self.client = InfluxDBClient.from_env_properties()

Profile query

The Flux Profiler package provides performance profiling tools for Flux queries and operations.

You can enable printing profiler information of the Flux query in client library by:

  • set QueryOptions.profilers in QueryApi,
  • set INFLUXDB_V2_PROFILERS environment variable,
  • set profilers option in configuration file.

When the profiler is enabled, the result of flux query contains additional tables "profiler/". In order to have consistent behaviour with enabled/disabled profiler, FluxCSVParser excludes "profiler/" measurements from result.

Example how to enable profilers using API:

q = ''' from(bucket: stringParam) |> range(start: -5m, stop: now()) |> filter(fn: (r) => r._measurement == "mem") |> filter(fn: (r) => r._field == "available" or r._field == "free" or r._field == "used") |> aggregateWindow(every: 1m, fn: mean) |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") ''' p = { "stringParam": "my-bucket", } query_api = client.query_api(query_options=QueryOptions(profilers=["query", "operator"])) csv_result = query_api.query(query=q, params=p)

Example of a profiler output:

=============== Profiler: query =============== from(bucket: stringParam) |> range(start: -5m, stop: now()) |> filter(fn: (r) => r._measurement == "mem") |> filter(fn: (r) => r._field == "available" or r._field == "free" or r._field == "used") |> aggregateWindow(every: 1m, fn: mean) |> pivot(rowKey:["_time"], columnKey: ["_field"], valueColumn: "_value") ======================== Profiler: profiler/query ======================== result : _profiler table : 0 _measurement : profiler/query TotalDuration : 8924700 CompileDuration : 350900 QueueDuration : 33800 PlanDuration : 0 RequeueDuration : 0 ExecuteDuration : 8486500 Concurrency : 0 MaxAllocated : 2072 TotalAllocated : 0 flux/query-plan : digraph { ReadWindowAggregateByTime11 // every = 1m, aggregates = [mean], createEmpty = true, timeColumn = "_stop" pivot8 generated_yield ReadWindowAggregateByTime11 -> pivot8 pivot8 -> generated_yield } influxdb/scanned-bytes: 0 influxdb/scanned-values: 0 =========================== Profiler: profiler/operator =========================== result : _profiler table : 1 _measurement : profiler/operator Type : *universe.pivotTransformation Label : pivot8 Count : 3 MinDuration : 32600 MaxDuration : 126200 DurationSum : 193400 MeanDuration : 64466.666666666664 =========================== Profiler: profiler/operator =========================== result : _profiler table : 1 _measurement : profiler/operator Type : *influxdb.readWindowAggregateSource Label : ReadWindowAggregateByTime11 Count : 1 MinDuration : 940500 MaxDuration : 940500 DurationSum : 940500 MeanDuration : 940500.0

You can also use callback function to get profilers output. Return value of this callback is type of FluxRecord.

Example how to use profilers with callback:

class ProfilersCallback(object): def __init__(self): self.records = [] def __call__(self, flux_record): self.records.append(flux_record.values) callback = ProfilersCallback() query_api = client.query_api(query_options=QueryOptions(profilers=["query", "operator"], profiler_callback=callback)) tables = query_api.query('from(bucket:"my-bucket") |> range(start: -10m)') for profiler in callback.records: print(f'Custom processing of profiler result: {profiler}')

Example output of this callback:

Custom processing of profiler result: {'result': '_profiler', 'table': 0, '_measurement': 'profiler/query', 'TotalDuration': 18843792, 'CompileDuration': 1078666, 'QueueDuration': 93375, 'PlanDuration': 0, 'RequeueDuration': 0, 'ExecuteDuration': 17371000, 'Concurrency': 0, 'MaxAllocated': 448, 'TotalAllocated': 0, 'RuntimeErrors': None, 'flux/query-plan': 'digraph {\r\n ReadRange2\r\n generated_yield\r\n\r\n ReadRange2 -> generated_yield\r\n}\r\n\r\n', 'influxdb/scanned-bytes': 0, 'influxdb/scanned-values': 0} Custom processing of profiler result: {'result': '_profiler', 'table': 1, '_measurement': 'profiler/operator', 'Type': '*influxdb.readFilterSource', 'Label': 'ReadRange2', 'Count': 1, 'MinDuration': 3274084, 'MaxDuration': 3274084, 'DurationSum': 3274084, 'MeanDuration': 3274084.0}
<!-- marker-index-end -->

How to use

Writes

<!-- marker-writes-start -->

The WriteApi supports synchronous, asynchronous and batching writes into InfluxDB 2.0. The data should be passed as a InfluxDB Line Protocol, Data Point or Observable stream.

:warning:

The WriteApi in batching mode (default mode) is supposed to run as a singleton. To flush all your data you should wrap the execution using with client.write_api(...) as write_api: statement or call write_api.close() at the end of your script.

The default instance of WriteApi use batching.

The data could be written as

  1. string or bytes that is formatted as a InfluxDB's line protocol
  2. Data Point structure
  3. Dictionary style mapping with keys: measurement, tags, fields and time or custom structure
  4. NamedTuple
  5. [Data

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI助手AI工具AI写作工具AI辅助写作蛙蛙写作学术助手办公助手营销助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多