awesome-efficient-aigc

awesome-efficient-aigc

AIGC效率优化技术与资源汇总

该项目汇集了提高AI生成内容(AIGC)效率的最新技术资源,包括大语言模型(LLMs)和扩散模型(DMs)的优化方法。收录内容涵盖前沿研究论文、代码实现和综述文章,重点关注量化、微调等效率提升技术。这一持续更新的资源库为AIGC领域的研究和开发提供了全面的参考,有助于推动相关技术的进步与落地应用。

AIGCLLM量化高效推理模型压缩Github开源项目

Awesome Efficient AIGC Awesome

This repo collects efficient approaches for AI-Generated Content (AIGC) to cope with its huge demand for computing resources, including efficient Large Language Models (LLMs), Diffusion Models (DMs), etc. We are continuously improving the project. Welcome to PR the works (papers, repositories) missed by the repo. Special thanks to Xingyu Zheng, Xudong Ma, Yifu Ding, and all researchers who have contributed to this project!

Table of Contents

Survey

  • [Arxiv] Efficient Prompting Methods for Large Language Models: A Survey
  • [Arxiv] Efficient Diffusion Models for Vision: A Survey
  • [Arxiv] Faster and Lighter LLMs: A Survey on Current Challenges and Way Forward [code] GitHub Repo stars
  • [Arxiv] A Survey on Knowledge Distillation of Large Language Models [code] GitHub Repo stars
  • [Arxiv] Model Compression and Efficient Inference for Large Language Models: A Survey
  • [Arxiv] A Survey on Transformer Compression
  • [Arxiv] A Comprehensive Survey of Compression Algorithms for Language Models
  • [Arxiv] Unlocking Efficiency in Large Language Model Inference: A Comprehensive Survey of Speculative Decoding [code] GitHub Repo stars [Blog]
  • [Arxiv] Personal LLM Agents: Insights and Survey about the Capability, Efficiency and Security [code] GitHub Repo stars
  • [Arxiv] A Survey on Hardware Accelerators for Large Language Models
  • [Arxiv] A Survey of Resource-efficient LLM and Multimodal Foundation Models [code] GitHub Repo stars
  • [Arxiv] Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models [code] GitHub Repo stars
  • [Arxiv] Towards Efficient Generative Large Language Model Serving: A Survey from Algorithms to Systems
  • [Arxiv] Efficient Large Language Models: A Survey [code] GitHub Repo stars
  • [Arxiv] The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [code] GitHub Repo stars
  • [Arxiv] A Survey on Model Compression for Large Language Models
  • [Arxiv] A Comprehensive Survey on Knowledge Distillation of Diffusion Models
  • [TACL] Compressing Large-Scale Transformer-Based Models: A Case Study on BERT
  • [JSA] A Survey of Techniques for Optimizing Transformer Inference
  • [Arxiv] Understanding LLMs: A Comprehensive Overview from Training to Inference

Language

2024

Quantization

  • [arXiv] How Good Are Low-bit Quantized LLaMA3 Models? An Empirical Study [code]GitHub Repo stars [HuggingFace]
  • [ArXiv] Accurate LoRA-Finetuning Quantization of LLMs via Information Retention [code]GitHub Repo stars
  • [ArXiv] BiLLM: Pushing the Limit of Post-Training Quantization for LLMs [code]GitHub Repo stars
  • [ArXiv] DB-LLM: Accurate Dual-Binarization for Efficient LLMs
  • [ArXiv] Extreme Compression of Large Language Models via Additive Quantization
  • [ArXiv] Quantized Side Tuning: Fast and Memory-Efficient Tuning of Quantized Large Language Models
  • [ArXiv] FP6-LLM: Efficiently Serving Large Language Models Through FP6-Centric Algorithm-System Co-Design
  • [ArXiv] KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization
  • [ArXiv] EdgeQAT: Entropy and Distribution Guided Quantization-Aware Training for the Acceleration of Lightweight LLMs on the Edge [code] GitHub Repo stars
  • [ArXiv] Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs
  • [ArXiv] LQER: Low-Rank Quantization Error Reconstruction for LLMs
  • [ArXiv] KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache [code] GitHub Repo stars
  • [ArXiv] QuIP#: Even Better LLM Quantization with Hadamard Incoherence and Lattice Codebooks [code] GitHub Repo stars
  • [ArXiv] L4Q: Parameter Efficient Quantization-Aware Training on Large Language Models via LoRA-wise LSQ
  • [ArXiv] TP-Aware Dequantization
  • [ArXiv] ApiQ: Finetuning of 2-Bit Quantized Large Language Model
  • [ArXiv] Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs
  • [ArXiv] BitDistiller: Unleashing the Potential of Sub-4-Bit LLMs via Self-Distillation [code] GitHub Repo stars
  • [ArXiv] OneBit: Towards Extremely Low-bit Large Language Models
  • [ArXiv] WKVQuant: Quantising Weight and Key/Value Cache for Large Language Models Gains More
  • [ArXiv] GPTVQ: The Blessing of Dimensionality for LLM Quantization [code] GitHub Repo stars
  • [DAC] APTQ: Attention-aware Post-Training Mixed-Precision Quantization for Large Language Models
  • [DAC] A Comprehensive Evaluation of Quantization Strategies for Large Language Models
  • [ArXiv] No Token Left Behind: Reliable KV Cache Compression via Importance-Aware Mixed Precision Quantization
  • [ArXiv] Evaluating Quantized Large Language Models
  • [ArXiv] FlattenQuant: Breaking Through the Inference Compute-bound for Large Language Models with Per-tensor Quantization
  • [ArXiv] LLM-PQ: Serving LLM on Heterogeneous Clusters with Phase-Aware Partition and Adaptive Quantization
  • [ArXiv] IntactKV: Improving Large Language Model Quantization by Keeping Pivot Tokens Intact
  • [ArXiv] On the Compressibility of Quantized Large Language Models
  • [ArXiv] EasyQuant: An Efficient Data-free Quantization Algorithm for LLMs
  • [ArXiv] QAQ: Quality Adaptive Quantization for LLM KV Cache [code] GitHub Repo stars
  • [ArXiv] GEAR: An Efficient KV Cache Compression Recipefor Near-Lossless Generative Inference of LLM
  • [ArXiv] What Makes Quantization for Large Language Models Hard? An Empirical Study from the Lens of Perturbation
  • [ArXiv] SVD-LLM: Truncation-aware Singular Value Decomposition for Large Language Model Compression [code] GitHub Repo stars
  • [ICLR] AffineQuant: Affine Transformation Quantization for Large Language Models [code] GitHub Repo stars
  • [ICLR Practical ML for Low Resource Settings Workshop] Oh! We Freeze: Improving Quantized Knowledge Distillation via Signal Propagation Analysis for Large Language Models
  • [ArXiv] Accurate Block Quantization in LLMs with Outliers
  • [ArXiv] QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs [code] GitHub Repo stars
  • [ArXiv] Minimize Quantization Output Error with Bias Compensation [code] GitHub Repo stars
  • [ArXiv] Cherry on Top: Parameter Heterogeneity and Quantization in Large Language Models

Fine-tuning

  • [ArXiv] BitDelta: Your Fine-Tune May Only Be Worth One Bit [code] GitHub Repo stars
  • [AAAI EIW Workshop 2024] QDyLoRA: Quantized Dynamic Low-Rank Adaptation for Efficient Large Language Model Tuning

Other

  • [ArXiv] FlightLLM: Efficient Large Language Model Inference with a Complete Mapping Flow on FPGA
  • [ArXiv] Inferflow: an Efficient and Highly Configurable Inference Engine for Large Language Models

2023

Quantization

  • [ICLR] GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers [code] GitHub Repo stars
  • [NeurIPS] QLORA: Efficient Finetuning of Quantized LLMs [code] GitHub Repo stars
  • [NeurIPS] Memory-Efficient Fine-Tuning of Compressed Large Language Models via sub-4-bit Integer Quantization
  • [ICML] SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models [code] GitHub Repo stars
  • [ICML] FlexRound: Learnable Rounding based on Element-wise Division for Post-Training Quantization

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

聊天机器人AI助手热门AI工具AI对话
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

热门AI工具AI办公办公工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

模型训练热门AI工具内容创作智能问答AI开发讯飞星火大模型多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

AI助手热门AI工具AI创作AI辅助写作讯飞绘文内容运营个性化文章多平台分发
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多