** Installation To install flask-msearch:
#+BEGIN_SRC shell pip install flask-msearch
pip install whoosh blinker
pip install elasticsearch==6.3.1 #+END_SRC
Or alternatively, you can download the repository and install manually by doing: #+BEGIN_SRC sehll git clone https://github.com/honmaple/flask-msearch cd flask-msearch python setup.py install #+END_SRC
** Quickstart #+BEGIN_SRC python from flask_msearch import Search [...] search = Search() search.init_app(app)
# models.py
class Post(db.Model):
__tablename__ = 'post'
__searchable__ = ['title', 'content']
# views.py
@app.route("/search")
def w_search():
keyword = request.args.get('keyword')
results = Post.query.msearch(keyword,fields=['title'],limit=20).filter(...)
# or
results = Post.query.filter(...).msearch(keyword,fields=['title'],limit=20).filter(...)
# elasticsearch
keyword = "title:book AND content:read"
# more syntax please visit https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html
results = Post.query.msearch(keyword,limit=20).filter(...)
return ''
#+END_SRC
** Config
#+BEGIN_SRC python # when backend is elasticsearch, MSEARCH_INDEX_NAME is unused # flask-msearch will use table name as elasticsearch index name unless set msearch_index MSEARCH_INDEX_NAME = 'msearch' # simple,whoosh,elaticsearch, default is simple MSEARCH_BACKEND = 'whoosh' # table's primary key if you don't like to use id, or set msearch_primary_key for special model MSEARCH_PRIMARY_KEY = 'id' # auto create or update index MSEARCH_ENABLE = True # logger level, default is logging.WARNING MSEARCH_LOGGER = logging.DEBUG # SQLALCHEMY_TRACK_MODIFICATIONS must be set to True when msearch auto index is enabled SQLALCHEMY_TRACK_MODIFICATIONS = True # when backend is elasticsearch ELASTICSEARCH = {"hosts": ["127.0.0.1:9200"]} #+END_SRC
** Usage #+BEGIN_SRC python from flask_msearch import Search [...] search = Search() search.init_app(app)
class Post(db.Model):
__tablename__ = 'basic_posts'
__searchable__ = ['title', 'content']
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.String(49))
content = db.Column(db.Text)
def __repr__(self):
return '<Post:{}>'.format(self.title)
#+END_SRC
if raise sqlalchemy ValueError,please pass db param to Search #+BEGIN_SRC python db = SQLalchemy() search = Search(db=db) #+END_SRC
*** Create_index #+BEGIN_SRC sh search.create_index() search.create_index(Post) #+END_SRC
*** Update_index #+BEGIN_SRC python search.update_index() search.update_index(Post) # or search.create_index(update=True) search.create_index(Post, update=True) #+END_SRC
*** Delete_index #+BEGIN_SRC python search.delete_index() search.delete_index(Post) # or search.create_index(delete=True) search.create_index(Post, delete=True) #+END_SRC
*** Custom Analyzer only for whoosh backend #+BEGIN_SRC python from jieba.analyse import ChineseAnalyzer search = Search(analyzer=ChineseAnalyzer()) #+END_SRC
or use =__msearch_analyzer__= for special model
#+BEGIN_SRC python
class Post(db.Model):
__tablename__ = 'post'
__searchable__ = ['title', 'content', 'tag.name']
__msearch_analyzer__ = ChineseAnalyzer()
#+END_SRC
*** Custom index name If you want to set special index name for some model. #+BEGIN_SRC python class Post(db.Model): tablename = 'post' searchable = ['title', 'content', 'tag.name'] msearch_index = "post111" #+END_SRC
*** Custom schema #+BEGIN_SRC python from whoosh.fields import ID
class Post(db.Model):
__tablename__ = 'post'
__searchable__ = ['title', 'content', 'tag.name']
__msearch_schema__ = {'title': ID(stored=True, unique=True), 'content': 'text'}
#+END_SRC
*Note:* if you use =hybrid_property=, default field type is =Text= unless set special =__msearch_schema__=
*** Custom parser #+begin_src python from whoosh.qparser import MultifieldParser
class Post(db.Model):
__tablename__ = 'post'
__searchable__ = ['title', 'content']
def _parser(fieldnames, schema, group, **kwargs):
return MultifieldParser(fieldnames, schema, group=group, **kwargs)
__msearch_parser__ = _parser
#+end_src
*Note:* Only for =MSEARCH_BACKEND= is =whoosh=
*** Custom index signal flask-msearch uses flask signal to update index by default, if you want to use other asynchronous tools such as celey to update index, please set special =MSEARCH_INDEX_SIGNAL= #+begin_src python # app.py app.config["MSEARCH_INDEX_SIGNAL"] = celery_signal # or use string as variable app.config["MSEARCH_INDEX_SIGNAL"] = "modulename.tasks.celery_signal" search = Search(app)
# tasks.py
from flask_msearch.signal import default_signal
@celery.task(bind=True)
def celery_signal_task(self, backend, sender, changes):
default_signal(backend, sender, changes)
return str(self.request.id)
def celery_signal(backend, sender, changes):
return celery_signal_task.delay(backend, sender, changes)
#+end_src
** Relate index(Experimental) for example #+BEGIN_SRC python class Tag(db.Model): tablename = 'tag'
id = db.Column(db.Integer, primary_key=True)
name = db.Column(db.String(49))
class Post(db.Model):
__tablename__ = 'post'
__searchable__ = ['title', 'content', 'tag.name']
id = db.Column(db.Integer, primary_key=True)
title = db.Column(db.String(49))
content = db.Column(db.Text)
# one to one
tag_id = db.Column(db.Integer, db.ForeignKey('tag.id'))
tag = db.relationship(
Tag, backref=db.backref(
'post', uselist=False), uselist=False)
def __repr__(self):
return '<Post:{}>'.format(self.title)
#+END_SRC
You must add msearch_FUN to Tag model,or the tag.name can't auto update. #+BEGIN_SRC python class Tag.... ...... def msearch_post_tag(self, delete=False): from sqlalchemy import text sql = text('select id from post where tag_id=' + str(self.id)) return { 'attrs': [{ 'id': str(i[0]), 'tag.name': self.name } for i in db.engine.execute(sql)], '_index': Post } #+END_SRC


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频


实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会 议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。


选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满 足您的需求,让您的生活更加智能便捷。


像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。


AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。


一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创 作


AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号