Awesome-Pruning

Awesome-Pruning

神经网络剪枝技术论文与代码资源汇总

该项目汇总了神经网络剪枝领域从2015年至今的重要研究成果。内容涵盖权重剪枝、滤波器剪枝和特殊网络剪枝等多种技术。论文按年份和会议分类,并提供标题、发表venue、剪枝类型及代码链接。此外还包含一篇结构化剪枝综述和分类图。对神经网络压缩和效率优化研究者而言,这是一个全面且实用的资源集合。

神经网络剪枝深度学习模型压缩稀疏化AwesomeGithub开源项目

Awesome Pruning Awesome

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Please feel free to pull requests or open an issue to add papers.

Table of Contents

Type of Pruning

TypeFWSOther
ExplanationFilter pruningWeight pruningSpecial Networksother types

A Survey of Structured Pruning (arXiv version and IEEE T-PAMI version)

Please cite our paper if it's helpful:

@article{he2024structured,
  author={He, Yang and Xiao, Lingao},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={Structured Pruning for Deep Convolutional Neural Networks: A Survey}, 
  year={2024},
  volume={46},
  number={5},
  pages={2900-2919},
  doi={10.1109/TPAMI.2023.3334614}}

The related papers are categorized as below: Structured Pruning Taxonomy

2023

TitleVenueTypeCode
Revisiting Pruning at Initialization Through the Lens of Ramanujan GraphICLRWPyTorch(Author)(Releasing)
Unmasking the Lottery Ticket Hypothesis: What's Encoded in a Winning Ticket's Mask?ICLRW-
Bit-Pruning: A Sparse Multiplication-Less Dot-ProductICLRWCode Deleted
NTK-SAP: Improving neural network pruning by aligning training dynamicsICLRW-
A Unified Framework for Soft Threshold PruningICLRWPyTorch(Author)
CrAM: A Compression-Aware MinimizerICLRW-
Trainability Preserving Neural PruningICLRF-
DFPC: Data flow driven pruning of coupled channels without dataICLRFPyTorch(Author)
TVSPrune - Pruning Non-discriminative filters via Total Variation separability of intermediate representations without fine tuningICLRFPyTorch(Author)
HomoDistil: Homotopic Task-Agnostic Distillation of Pre-trained TransformersICLRF-
MECTA: Memory-Economic Continual Test-Time Model AdaptationICLRF-
DepthFL : Depthwise Federated Learning for Heterogeneous ClientsICLRF-
OTOv2: Automatic, Generic, User-FriendlyICLRFPyTorch(Author)
Over-parameterized Model Optimization with Polyak-Lojasiewicz ConditionICLRF-
Pruning Deep Neural Networks from a Sparsity PerspectiveICLRWFPyTorch(Author)
Holistic Adversarially Robust PruningICLRWF-
How I Learned to Stop Worrying and Love RetrainingICLRWFPyTorch(Author)
Symmetric Pruning in Quantum Neural NetworksICLRS-
Rethinking Graph Lottery Tickets: Graph Sparsity MattersICLRS-
Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural NetworksICLRS-
Searching Lottery Tickets in Graph Neural Networks: A Dual PerspectiveICLRS-
Diffusion Models for Causal Discovery via Topological OrderingICLRS-
A General Framework For Proving The Equivariant Strong Lottery Ticket HypothesisICLROther-
Sparsity May Cry: Let Us Fail (Current) Sparse Neural Networks Together!ICLROther-
Minimum Variance Unbiased N:M Sparsity for the Neural GradientsICLROther-

2022

TitleVenueTypeCode
Parameter-Efficient Masking NetworksNeurIPSWPyTorch(Author)
"Lossless" Compression of Deep Neural Networks: A High-dimensional Neural Tangent Kernel ApproachNeurIPSWPyTorch(Author)
Losses Can Be Blessings: Routing Self-Supervised Speech Representations Towards Efficient Multilingual and Multitask Speech ProcessingNeurIPSWPyTorch(Author)
Models Out of Line: A Fourier Lens on Distribution Shift RobustnessNeurIPSWPyTorch(Author)
Robust Binary Models by Pruning Randomly-initialized NetworksNeurIPSWPyTorch(Author)
Rare Gems: Finding Lottery Tickets at InitializationNeurIPSWPyTorch(Author)
Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and PruningNeurIPSWPyTorch(Author)
Pruning’s Effect on Generalization Through the Lens of Training and RegularizationNeurIPSW-
Back Razor: Memory-Efficient Transfer Learning by Self-Sparsified BackpropagationNeurIPSWPyTorch(Author)
Analyzing Lottery Ticket Hypothesis from PAC-Bayesian Theory PerspectiveNeurIPSW-
Sparse Winning Tickets are Data-Efficient Image RecognizersNeurIPSWPyTorch(Author)
Lottery Tickets on a Data Diet: Finding Initializations with Sparse Trainable NetworksNeurIPSW-
Weighted Mutual Learning with Diversity-Driven Model CompressionNeurIPSF-
SInGE: Sparsity via Integrated Gradients Estimation of Neuron RelevanceNeurIPSF-
Data-Efficient Structured Pruning via Submodular OptimizationNeurIPSFPyTorch(Author)
Structural Pruning via Latency-Saliency KnapsackNeurIPSFPyTorch(Author)
Recall Distortion in Neural Network Pruning and the Undecayed Pruning AlgorithmNeurIPSWF-
Pruning Neural Networks via Coresets and Convex Geometry: Towards No AssumptionsNeurIPSWF-
Controlled Sparsity via Constrained Optimization or: How I Learned to Stop Tuning Penalties and Love ConstraintsNeurIPSWFPyTorch(Author)
Advancing Model Pruning via Bi-level OptimizationNeurIPSWFPyTorch(Author)
Emergence of Hierarchical Layers in a Single Sheet of Self-Organizing Spiking NeuronsNeurIPSS-
CryptoGCN: Fast and Scalable Homomorphically Encrypted Graph Convolutional Network InferenceNeurIPSSPyTorch(Author)(Releasing)
Transform Once: Efficient Operator Learning in Frequency DomainNeurIPSOtherPyTorch(Author)(Releasing)
Most Activation Functions Can Win the Lottery Without Excessive DepthNeurIPSOtherPyTorch(Author)
Pruning has a disparate impact on model accuracyNeurIPSOther-
Model Preserving Compression for Neural NetworksNeurIPSOtherPyTorch(Author)
Prune Your Model Before Distill ItECCVWPyTorch(Author)
FedLTN: Federated Learning for Sparse and Personalized Lottery Ticket NetworksECCVW-
FairGRAPE: Fairness-Aware GRAdient Pruning mEthod for Face Attribute ClassificationECCVFPyTorch(Author)
SuperTickets: Drawing Task-Agnostic Lottery Tickets from Supernets via Jointly Architecture Searching and Parameter PruningECCVFPyTorch(Author)
Ensemble Knowledge Guided Sub-network Search and Fine-Tuning for Filter PruningECCVFPyTorch(Author)
[CPrune: Compiler-Informed Model Pruning for Efficient Target-Aware DNN

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多