gophernotes

gophernotes

Jupyter和nteract的Go语言交互式内核

Gophernotes作为Jupyter和nteract的Go语言内核,实现了在交互式环境中编写和执行Go代码。它支持创建融合代码、公式、可视化和说明文本的文档,便于分享和协作。该工具涵盖了Go的主要语法特性,为数据分析等应用提供了灵活的开发平台,但在Windows系统上使用第三方包时有一定限制。

JupyterGo语言交互式编程数据科学可视化Github开源项目

alt tag

Build Status License

gophernotes - Use Go in Jupyter notebooks and nteract

gophernotes is a Go kernel for Jupyter notebooks and nteract. It lets you use Go interactively in a browser-based notebook or desktop app. Use gophernotes to create and share documents that contain live Go code, equations, visualizations and explanatory text. These notebooks, with the live Go code, can then be shared with others via email, Dropbox, GitHub and the Jupyter Notebook Viewer. Go forth and do data science, or anything else interesting, with Go notebooks!

Acknowledgements - This project utilizes a Go interpreter called gomacro under the hood to evaluate Go code interactively. The gophernotes logo was designed by the brilliant Marcus Olsson and was inspired by Renee French's original Go Gopher design.

Examples

Jupyter Notebook:

nteract:

Example Notebooks (download and run them locally, follow the links to view in Github, or use the Jupyter Notebook Viewer):

Installation

Prerequisites

Linux or FreeBSD

The instructions below should work both on Linux and on FreeBSD.

Method 1: quick installation as module

go install github.com/gopherdata/gophernotes@v0.7.5 mkdir -p ~/.local/share/jupyter/kernels/gophernotes cd ~/.local/share/jupyter/kernels/gophernotes cp "$(go env GOPATH)"/pkg/mod/github.com/gopherdata/gophernotes@v0.7.5/kernel/* "." chmod +w ./kernel.json # in case copied kernel.json has no write permission sed "s|gophernotes|$(go env GOPATH)/bin/gophernotes|" < kernel.json.in > kernel.json

Method 2: manual installation from GOPATH

mkdir -p "$(go env GOPATH)"/src/github.com/gopherdata cd "$(go env GOPATH)"/src/github.com/gopherdata git clone https://github.com/gopherdata/gophernotes cd gophernotes git checkout -f v0.7.5 go install mkdir -p ~/.local/share/jupyter/kernels/gophernotes cp kernel/* ~/.local/share/jupyter/kernels/gophernotes cd ~/.local/share/jupyter/kernels/gophernotes chmod +w ./kernel.json # in case copied kernel.json has no write permission sed "s|gophernotes|$(go env GOPATH)/bin/gophernotes|" < kernel.json.in > kernel.json

To confirm that the gophernotes binary is installed in GOPATH, execute it directly:

"$(go env GOPATH)"/bin/gophernotes

and you should see the following:

2017/09/20 10:33:12 Need a command line argument specifying the connection file.

Note - if you have the JUPYTER_PATH environmental variable set or if you are using an older version of Jupyter, you may need to copy this kernel config to another directory. You can check which directories will be searched by executing:

jupyter --data-dir

Mac

Important Note - gomacro relies on the plugin package when importing third party libraries. This package works reliably on Mac OS X with Go 1.10.2+ as long as you never execute the command strip gophernotes.

Method 1: quick installation as module

go install github.com/gopherdata/gophernotes@v0.7.5 mkdir -p ~/Library/Jupyter/kernels/gophernotes cd ~/Library/Jupyter/kernels/gophernotes cp "$(go env GOPATH)"/pkg/mod/github.com/gopherdata/gophernotes@v0.7.5/kernel/* "." chmod +w ./kernel.json # in case copied kernel.json has no write permission sed "s|gophernotes|$(go env GOPATH)/bin/gophernotes|" < kernel.json.in > kernel.json

Method 2: manual installation from GOPATH

mkdir -p "$(go env GOPATH)"/src/github.com/gopherdata cd "$(go env GOPATH)"/src/github.com/gopherdata git clone https://github.com/gopherdata/gophernotes cd gophernotes git checkout -f v0.7.5 go install mkdir -p ~/Library/Jupyter/kernels/gophernotes cp kernel/* ~/Library/Jupyter/kernels/gophernotes cd ~/Library/Jupyter/kernels/gophernotes chmod +w ./kernel.json # in case copied kernel.json has no write permission sed "s|gophernotes|$(go env GOPATH)/bin/gophernotes|" < kernel.json.in > kernel.json

To confirm that the gophernotes binary is installed in GOPATH, execute it directly:

"$(go env GOPATH)"/bin/gophernotes

and you should see the following:

2017/09/20 10:33:12 Need a command line argument specifying the connection file.

Note - if you have the JUPYTER_PATH environmental variable set or if you are using an older version of Jupyter, you may need to copy this kernel config to another directory. You can check which directories will be searched by executing:

jupyter --data-dir

Windows

Important Note - gomacro relies on the plugin package when importing third party libraries. This package is only supported on Linux and Mac OS X currently. Thus, if you need to utilize third party packages in your Go notebooks and you are running on Windows, you should use the Docker install and run gophernotes/Jupyter in Docker.

  1. Download gophernotes inside GOPATH, compile and install it

    go env GOPATH > temp.txt
    set /p GOPATH=<temp.txt
    mkdir %GOPATH%\src\github.com\gopherdata
    cd /d %GOPATH%\src\github.com\gopherdata
    git clone https://github.com/gopherdata/gophernotes
    cd gophernotes
    git checkout -f v0.7.5
    go install
    
  2. Copy the kernel config:

    mkdir %APPDATA%\jupyter\kernels\gophernotes
    xcopy %GOPATH%\src\github.com\gopherdata\gophernotes\kernel %APPDATA%\jupyter\kernels\gophernotes /s
    

    Note, if you have the JUPYTER_PATH environmental variable set or if you are using an older version of Jupyter, you may need to copy this kernel config to another directory. You can check which directories will be searched by executing:

    jupyter --data-dir
    
  3. Update %APPDATA%\jupyter\kernels\gophernotes\kernel.json with the FULL PATH to your gophernotes.exe (usually in %GOPATH%\bin). For example:

    {
        "argv": [
          "C:\\gopath\\bin\\gophernotes.exe",
          "{connection_file}"
          ],
        "display_name": "Go",
        "language": "go",
        "name": "go"
    }
    

Docker

You can try out or run Jupyter + gophernotes without installing anything using Docker. To run a Go notebook that only needs things from the standard library, run:

  docker run -it -p 8888:8888 gopherdata/gophernotes

Or to run a Go notebook with access to common Go data science packages (gonum, gota, golearn, etc.), run:

  docker run -it -p 8888:8888 gopherdata/gophernotes:latest-ds

In either case, running this command should output a link that you can follow to access Jupyter in a browser. Also, to save notebooks to and/or load notebooks from a location outside of the Docker image, you should utilize a volume mount. For example:

  docker run -it -p 8888:8888 -v /path/to/local/notebooks:/path/to/notebooks/in/docker gopherdata/gophernotes

Getting Started

Jupyter

  • If you completed one of the local installs above (i.e., not the Docker install), start the jupyter notebook server:

    jupyter notebook
    
  • Select Go from the New drop down menu.

  • Have fun!

nteract

  • Launch nteract.

  • From the nteract menu select Language -> Go.

  • Have fun!

Special commands

In addition to Go code, the following special commands are also supported - they must be on a line by their own:

  • %cd [path]
  • %go111module {on|off}
  • %help
  • $ shell_command [args...]

Limitations

gophernotes uses gomacro under the hood to evaluate Go code interactively. You can evaluate most any Go code with gomacro, but there are some limitations, which are discussed in further detail here. Most notably, gophernotes does NOT support:

  • importing third party packages when running natively on Windows - This is a current limitation of the Go plugin package.
  • some corner cases on interpreted interfaces, as interface -> interface type switch and type assertion, are not implemented yet.
  • some corner cases on recursive types may not work correctly.
  • conversion from typed constant to interpreted interface is not implemented. Workaround: assign the constant to a variable, then convert the variable to the interpreted interface type.
  • conversions from/to unsafe.Pointer are not supported.
  • goto is only partially implemented.
  • out-of-order code in the same cell is supported, but not heavily tested. It has some known limitations for composite literals.

Also, creation of new named types is emulated, and their methods are visible only to interpreted code.

Troubleshooting

gophernotes not found

Depending on your environment, you may need to manually change the path to the gophernotes executable in kernel/kernel.json before copying it to ~/.local/share/jupyter/kernels/gophernotes. You can put the full path to the gophernotes executable here, and you shouldn't have any further issues.

"Kernel error" in a running notebook

Traceback (most recent call last):
  File "/usr/local/lib/python2.7/site-packages/notebook/base/handlers.py", line 458, in wrapper
    result = yield gen.maybe_future(method(self, *args, **kwargs))
  File "/usr/local/lib/python2.7/site-packages/tornado/gen.py", line 1008, in run
    value = future.result()
  ...
  File "/usr/local/Cellar/python/2.7.11/Frameworks/Python.framework/Versions/2.7/lib/python2.7/subprocess.py", line 1335, in _execute_child
    raise child_exception
OSError: [Errno 2] No such file or directory

Stop jupyter, if it's already running.

Add a symlink to /go/bin/gophernotes from your path to the gophernotes executable. If you followed the instructions above, this will be:

sudo ln -s $HOME/go/bin/gophernotes /go/bin/gophernotes

Restart jupyter, and you should now be up and running.

error "could not import C (no metadata for C)" when importing a package

At a first analysis, it seems to be a limitation of the new import mechanism that supports Go modules. You can switch the old (non module-aware) mechanism with the command %go111module off

To re-enable modules support, execute %go111module on

Look at Jupyter notebook's logs for debugging

In order to see the logs for your Jupyter notebook, use the --log-level option

jupyter notebook --log-level

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

openai-agents-python

openai-agents-python

OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。

openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。

下拉加载更多