tuning_playbook

tuning_playbook

深度学习模型性能调优指南

该项目提供深度学习模型调优的全面指南,涵盖项目启动、架构选择、优化器配置、批量大小设置等关键环节。它介绍了科学的性能提升方法,以及训练流程优化和实验追踪等实用技巧,旨在帮助提高深度学习模型的性能。

深度学习超参数调优模型性能优化器批量大小Github开源项目

Deep Learning Tuning Playbook

This is not an officially supported Google product.

Varun Godbole<sup></sup>, George E. Dahl<sup></sup>, Justin Gilmer<sup></sup>, Christopher J. Shallue<sup></sup>, Zachary Nado<sup></sup>

† Google Research, Brain Team

‡ Harvard University

Table of Contents

Who is this document for?

This document is for engineers and researchers (both individuals and teams) interested in maximizing the performance of deep learning models. We assume basic knowledge of machine learning and deep learning concepts.

Our emphasis is on the process of hyperparameter tuning. We touch on other aspects of deep learning training, such as pipeline implementation and optimization, but our treatment of those aspects is not intended to be complete.

We assume the machine learning problem is a supervised learning problem or something that looks a lot like one (e.g. self-supervised). That said, some of the prescriptions in this document may also apply to other types of problems.

Why a tuning playbook?

Currently, there is an astonishing amount of toil and guesswork involved in actually getting deep neural networks to work well in practice. Even worse, the actual recipes people use to get good results with deep learning are rarely documented. Papers gloss over the process that led to their final results in order to present a cleaner story, and machine learning engineers working on commercial problems rarely have time to take a step back and generalize their process. Textbooks tend to eschew practical guidance and prioritize fundamental principles, even if their authors have the necessary experience in applied work to provide useful advice. When preparing to create this document, we couldn't find any comprehensive attempt to actually explain how to get good results with deep learning. Instead, we found snippets of advice in blog posts and on social media, tricks peeking out of the appendix of research papers, occasional case studies about one particular project or pipeline, and a lot of confusion. There is a vast gulf between the results achieved by deep learning experts and less skilled practitioners using superficially similar methods. At the same time, these very experts readily admit some of what they do might not be well-justified. As deep learning matures and has a larger impact on the world, the community needs more resources covering useful recipes, including all the practical details that can be so critical for obtaining good results.

We are a team of five researchers and engineers who have worked in deep learning for many years, some of us since as early as 2006. We have applied deep learning to problems in everything from speech recognition to astronomy, and learned a lot along the way. This document grew out of our own experience training neural networks, teaching new machine learning engineers, and advising our colleagues on the practice of deep learning. Although it has been gratifying to see deep learning go from a machine learning approach practiced by a handful of academic labs to a technology powering products used by billions of people, deep learning is still in its infancy as an engineering discipline and we hope this document encourages others to help systematize the field's experimental protocols.

This document came about as we tried to crystalize our own approach to deep learning and thus it represents the opinions of the authors at the time of writing, not any sort of objective truth. Our own struggles with hyperparameter tuning made it a particular focus of our guidance, but we also cover other important issues we have encountered in our work (or seen go wrong). Our intention is for this work to be a living document that grows and evolves as our beliefs change. For example, the material on debugging and mitigating training failures would not have been possible for us to write two years ago since it is based on recent results and ongoing investigations. Inevitably, some of our advice will need to be updated to account for new results and improved workflows. We do not know the optimal deep learning recipe, but until the community starts writing down and debating different procedures, we cannot hope to find it. To that end, we would encourage readers who find issues with our advice to produce alternative recommendations, along with convincing evidence, so we can update the playbook. We would also love to see alternative guides and playbooks that might have different recommendations so we can work towards best practices as a community. Finally, any sections marked with a 🤖 emoji are places we would like to do more research. Only after trying to write this playbook did it become completely clear how many interesting and neglected research questions can be found in the deep learning practitioner's workflow.

Guide for starting a new project

Many of the decisions we make over the course of tuning can be made once at the beginning of a project and only occasionally revisited when circumstances change.

Our guidance below makes the following assumptions:

  • Enough of the essential work of problem formulation, data cleaning, etc. has already been done that spending time on the model architecture and training configuration makes sense.
  • There is already a pipeline set up that does training and evaluation, and it is easy to execute training and prediction jobs for various models of interest.
  • The appropriate metrics have been selected and implemented. These should be as representative as possible of what would be measured in the deployed environment.

Choosing the model architecture

Summary: When starting a new project, try to reuse a model that already works.

  • Choose a well established, commonly used model architecture to get working first. It is always possible to build a custom model later.
  • Model architectures typically have various hyperparameters that determine the model's size and other details (e.g. number of layers, layer width, type of activation function).
  • When possible, try to find a paper that tackles something as close as possible to the problem at hand and reproduce that model as a starting point.

Choosing the optimizer

Summary: Start with the most popular optimizer for the type of problem at hand.

  • No optimizer is the "best" across all types of machine learning problems and model architectures. Even just comparing the performance of optimizers is a difficult task. 🤖
  • We recommend sticking with well-established, popular optimizers, especially when starting a new project.
    • Ideally, choose the most popular optimizer used for the same type of problem.
  • Be prepared to give attention to *all* hyperparameters of the chosen optimizer.
    • Optimizers with more hyperparameters may require more tuning effort to find the best configuration.
    • This is particularly relevant in the beginning stages of a project when we are trying to find the best values of various other hyperparameters (e.g. architecture hyperparameters) while treating optimizer hyperparameters as nuisance parameters.
    • It may be preferable to start with a simpler optimizer (e.g. SGD with fixed momentum or Adam with fixed $\epsilon$, $\beta_{1}$, and $\beta_{2}$) in the initial stages of the project and switch to a more general optimizer later.
  • Well-established optimizers that we like include (but are not limited to):

Choosing the batch size

Summary: The batch size governs the training speed and shouldn't be used to directly tune the validation set performance. Often, the ideal batch size will be the largest batch size supported by the available hardware.

  • The batch size is a key factor in determining the training time and computing resource consumption.
  • Increasing the batch size will often reduce the training time. This can be highly beneficial because it, e.g.:
    • Allows hyperparameters to be tuned more thoroughly within a fixed time interval, potentially resulting in a better final model.
    • Reduces the latency of the development cycle, allowing new ideas to be tested more frequently.
  • Increasing the batch size may either decrease, increase, or not change the resource consumption.
  • The batch size should not be treated as a tunable hyperparameter for validation set performance.

Determining the feasible batch sizes and estimating training throughput

<details><summary><em>[Click to expand]</em></summary> <br>
  • For a given model and optimizer, there will typically be a range of batch sizes supported by the available hardware. The limiting factor is usually accelerator memory.
  • Unfortunately, it can be difficult to calculate which batch sizes will fit in memory without running, or at least compiling, the full training program.
  • The easiest solution is usually to run training jobs at different batch sizes (e.g. increasing powers of 2) for a small number of steps until one of the jobs exceeds the available memory.
  • For each batch size, we should train for long enough to get a reliable estimate of the training throughput
<p align="center">training throughput = (# examples processed per second)</p> <p align="center">or, equivalently, the <em>time per step</em>.</p> <p align="center">time per step = (batch size) / (training throughput)</p>
  • When the accelerators aren't yet saturated, if the batch size doubles, the training throughput should also double (or at least nearly double). Equivalently, the time per step should be constant (or at least nearly constant) as the batch size increases.
  • If this is not the case then the training pipeline has a bottleneck such as I/O or synchronization between compute nodes. This may be worth diagnosing and correcting before proceeding.
  • If the training throughput increases only up to some maximum batch size, then we should only consider batch sizes up to that maximum batch size, even if a larger batch size is supported by the hardware.
    • All benefits of using a larger batch size assume the training throughput increases. If it doesn't, fix the bottleneck or use the smaller batch size.
    • Gradient accumulation simulates a larger batch size than the hardware can support and therefore does not provide any throughput benefits. It should generally be avoided in applied work.
  • These steps may need to be repeated every time the model or optimizer is changed (e.g. a different model architecture may allow a larger batch size to fit in memory).
</details>

Choosing the batch size to minimize training time

<details><summary><em>[Click to expand]</em></summary> <br> <p align="center">Training time = (time per step) x (total number of steps)</p>
  • We can often consider the time per step to be approximately constant for all feasible batch sizes. This is true when there is no overhead from parallel computations and all training bottlenecks have been diagnosed and corrected (see the previous section for how to identify training bottlenecks). In practice, there is usually at least some overhead from increasing the batch size.
  • As the batch size increases, the total number of steps needed to reach a fixed performance goal typically decreases (provided all relevant hyperparameters are re-tuned when the batch size is changed; Shallue et al. 2018).
    • E.g. Doubling the batch size might halve the total number of steps required. This is called perfect scaling.
    • Perfect scaling holds for all batch sizes up to a critical batch size, beyond which one achieves diminishing returns.
    • Eventually, increasing the batch size no longer reduces the number of training steps (but never increases it).
  • Therefore, the batch size that minimizes training time is usually the largest batch size that still provides a reduction in the number of training steps required.
    • This batch size depends on the dataset, model, and optimizer, and it is an open problem how to calculate it other than finding it experimentally for every new problem. 🤖
    • When comparing batch sizes, beware the distinction between an example budget/epoch budget (running all experiments while fixing the number of training example presentations) and a step budget (running all experiments with the number of training steps fixed).
      • Comparing batch sizes with an epoch budget only probes the perfect scaling regime, even when larger batch sizes might still provide a meaningful speedup by reducing the number of training steps required.
    • Often, the largest batch size supported by the available hardware will be smaller than the critical batch size. Therefore, a good rule of thumb (without running any experiments) is to use the largest batch size possible.
  • There is no point in using a larger batch size if it ends up increasing the training time.
</details>

Choosing the batch size to minimize resource consumption

<details><summary><em>[Click to expand]</em></summary> <br>
  • There are two types of resource costs associated with increasing the batch size:
    1. Upfront costs, e.g. purchasing new hardware or rewriting the training pipeline to implement multi-GPU / multi-TPU training.
    2. Usage costs, e.g. billing against the team's resource budgets, billing from a cloud provider, electricity / maintenance costs.
  • If there are significant upfront costs to increasing the batch size, it might be better to defer increasing the batch size until the project has matured and it is easier to assess the cost-benefit tradeoff. Implementing multi-host parallel training programs can introduce bugs and subtle issues

编辑推荐精选

博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

下拉加载更多