arco-era5

arco-era5

云优化和分析就绪的气象再分析数据

ARCO-ERA5项目对ERA5气象再分析数据进行云端优化和分析就绪处理。项目将GRIB格式转换为Zarr格式,并生成规则经纬度网格的版本,便于研究和机器学习应用。数据集涵盖地表和大气层关键气象变量,每月更新,提供全球高分辨率数据。用户可选择原始、云优化或分析就绪版本,满足不同需求。

ERA5气候数据云优化分析就绪数据集Github开源项目

Analysis-Ready, Cloud Optimized ERA5

Recipes for reproducing Analysis-Ready & Cloud Optimized (ARCO) ERA5 datasets.

IntroductionOverviewAnalysis Ready DataRaw Cloud Optimized DataProject roadmapHow to reproduceFAQsHow to cite this workLicense

Introduction

Our goal is to make a global history of the climate highly accessible in the cloud. To that end, we present a curated copy of the ERA5 corpus in Google Cloud Public Datasets.

<details> <summary>What is ERA5?</summary>

ERA5 is the fifth generation of ECMWF's Atmospheric Reanalysis. It spans atmospheric, land, and ocean variables. ERA5 is an hourly dataset with global coverage at 30km resolution (~0.28° x 0.28°), ranging from 1979 to the present. The total ERA5 dataset is about 5 petabytes in size.

Check out ECMWF's documentation on ERA5 for more.

</details> <details> <summary>What is a reanalysis?</summary>

A reanalysis is the "most complete picture currently possible of past weather and climate." Reanalyses are created from assimilation of a wide range of data sources via numerical weather prediction (NWP) models.

Read ECMWF's introduction to reanalysis for more.

</details>

So far, we have ingested meteorologically valuable variables for the land and atmosphere. From this, we have produced a cloud-optimized version of ERA5, in which we have converted grib data to Zarr with no other modifications. In addition, we have created "analysis-ready" versions on regular lat-lon grids, oriented towards common research & ML workflows.

This two-pronged approach for the data serves different user needs. Some researchers need full control over the interpolation of data for their analysis. Most will want a batteries-included dataset, where standard pre-processing and chunk optimization is already applied. In general, we ensure that every step in this pipeline is open and reproducible, to provide transparency in the provenance of all data.

Overview

LocationTypeDescription
$BUCKET/ar/Analysis ReadyAn ML-ready, unified (surface & atmospheric) version of the data in Zarr.
$BUCKET/co/Cloud OptimizedA port of gaussian-gridded ERA5 data to Zarr.
$BUCKET/raw/Raw DataAll raw grib & NetCDF data.

Files are updated from ECMWF on a monthly cadence (on roughly the 9th of each month) with a 3 month delay, which avoids including preliminary versions of ERA5. The date of the latest available data can be found by inspecting the "time" axis of each Zarr store.

Analysis Ready Data

These datasets have been regridded to a uniform 0.25° equiangular horizontal resolution to facilitate downstream analyses, e.g., with WeatherBench2.

0.25° Pressure and Surface Level Data

This dataset contains most pressure-level fields and all surface-level field regridded to a uniform 0.25° resolution. It is a superset of the data used to train GraphCast and NeuralGCM.

import xarray ar_full_37_1h = xarray.open_zarr( 'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3', chunks=None, storage_options=dict(token='anon'), )
  • Times: 00/to/23
  • Levels: 1/2/3/5/7/10/20/30/50/70/100/125/150/175/200/225/250/300/350/400/450/500/550/600/650/700/750/775/800/825/850/875/900/925/950/975/1000
  • Grid: equiangular lat-lon
  • Size: 2.05 PB
  • Chunking: {'time': 1, 'latitude': 721, 'longitude': 1440, 'level': 37}
  • Chunk size (per variable): 154 MB
<details> <summary>Data summary table</summary>
nameshort nameunitsdocs
100m_u_component_of_windu100m s**-1https://codes.ecmwf.int/grib/param-db/228246
100m_v_component_of_windv100m s**-1https://codes.ecmwf.int/grib/param-db/228247
10m_u_component_of_neutral_windu10nm s**-1https://codes.ecmwf.int/grib/param-db/228131
10m_u_component_of_windu10m s**-1https://codes.ecmwf.int/grib/param-db/165
10m_v_component_of_neutral_windv10nm s**-1https://codes.ecmwf.int/grib/param-db/228132
10m_v_component_of_windv10m s**-1https://codes.ecmwf.int/grib/param-db/166
10m_wind_gust_since_previous_post_processingfg10m s**-1https://codes.ecmwf.int/grib/param-db/175049
2m_dewpoint_temperatured2mKhttps://codes.ecmwf.int/grib/param-db/500018
2m_temperaturet2mKhttps://codes.ecmwf.int/grib/param-db/500013
air_density_over_the_oceansp140209kg m**-3https://codes.ecmwf.int/grib/param-db/140209
angle_of_sub_gridscale_orographyanorradianshttps://codes.ecmwf.int/grib/param-db/162
anisotropy_of_sub_gridscale_orographyisor~https://codes.ecmwf.int/grib/param-db/161
benjamin_feir_indexbfidimensionlesshttps://codes.ecmwf.int/grib/param-db/140253
boundary_layer_dissipationbldJ m**-2https://codes.ecmwf.int/grib/param-db/145
boundary_layer_heightblhmhttps://codes.ecmwf.int/grib/param-db/159
charnockchnk~https://codes.ecmwf.int/grib/param-db/148
clear_sky_direct_solar_radiation_at_surfacecdirJ m**-2https://codes.ecmwf.int/grib/param-db/228022
cloud_base_heightcbhmhttps://codes.ecmwf.int/grib/param-db/228023
coefficient_of_drag_with_wavescdwwdimensionlesshttps://codes.ecmwf.int/grib/param-db/140233
convective_available_potential_energycapeJ kg**-1https://codes.ecmwf.int/grib/param-db/59
convective_inhibitioncinJ kg**-1https://codes.ecmwf.int/grib/param-db/228001
convective_precipitationcpmhttps://codes.ecmwf.int/grib/param-db/228143
convective_rain_ratecrrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228218
convective_snowfallcsfm of water equivalenthttps://codes.ecmwf.int/grib/param-db/239
convective_snowfall_rate_water_equivalentcsfrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228220
downward_uv_radiation_at_the_surfaceuvbJ m**-2https://codes.ecmwf.int/grib/param-db/57
duct_base_heightdctbmhttps://codes.ecmwf.int/grib/param-db/228017
eastward_gravity_wave_surface_stresslgwsN m**-2 shttps://codes.ecmwf.int/grib/param-db/195
eastward_turbulent_surface_stressewssN m**-2 shttps://codes.ecmwf.int/grib/param-db/180
evaporationem of water equivalenthttps://codes.ecmwf.int/grib/param-db/182
forecast_albedofal(0 - 1)https://codes.ecmwf.int/grib/param-db/243
forecast_logarithm_of_surface_roughness_for_heatflsr~https://codes.ecmwf.int/grib/param-db/245
forecast_surface_roughnessfsrmhttps://codes.ecmwf.int/grib/param-db/244
fraction_of_cloud_covercc(0 - 1)https://codes.ecmwf.int/grib/param-db/248
free_convective_velocity_over_the_oceansp140208m s**-1
friction_velocityzustm s**-1https://codes.ecmwf.int/grib/param-db/228003
geopotential_at_surfacezm2 s-2https://codes.ecmwf.int/grib/param-db/129
gravity_wave_dissipationgwdJ m**-2https://codes.ecmwf.int/grib/param-db/197
high_cloud_coverhcc(0 - 1)https://codes.ecmwf.int/grib/param-db/3075
high_vegetation_covercvh(0 - 1)https://codes.ecmwf.int/grib/param-db/28
ice_temperature_layer_1istl1Khttps://codes.ecmwf.int/grib/param-db/35
ice_temperature_layer_2istl2Khttps://codes.ecmwf.int/grib/param-db/36
ice_temperature_layer_3istl3Khttps://codes.ecmwf.int/grib/param-db/37
ice_temperature_layer_4istl4Khttps://codes.ecmwf.int/grib/param-db/38
instantaneous_10m_wind_gusti10fgm s**-1https://codes.ecmwf.int/grib/param-db/228029
instantaneous_eastward_turbulent_surface_stressiewsN m**-2https://codes.ecmwf.int/grib/param-db/229
instantaneous_large_scale_surface_precipitation_fractionilspf(0 - 1)https://codes.ecmwf.int/grib/param-db/228217
instantaneous_moisture_fluxiekg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/232
instantaneous_northward_turbulent_surface_stressinssN m**-2https://codes.ecmwf.int/grib/param-db/230
instantaneous_surface_sensible_heat_fluxishfW m**-2https://codes.ecmwf.int/grib/param-db/231
k_indexkxKhttps://codes.ecmwf.int/grib/param-db/260121
lake_bottom_temperaturelbltKhttps://codes.ecmwf.int/grib/param-db/228010
lake_covercl(0 - 1)https://codes.ecmwf.int/grib/param-db/26
lake_depthdlmhttps://codes.ecmwf.int/grib/param-db/228007
lake_ice_depthlicdmhttps://codes.ecmwf.int/grib/param-db/228014
lake_ice_temperaturelictKhttps://codes.ecmwf.int/grib/param-db/228013
lake_mix_layer_depthlmldmhttps://codes.ecmwf.int/grib/param-db/228009
lake_mix_layer_temperaturelmltKhttps://codes.ecmwf.int/grib/param-db/228008
lake_shape_factorlshfdimensionlesshttps://codes.ecmwf.int/grib/param-db/228012
lake_total_layer_temperatureltltKhttps://codes.ecmwf.int/grib/param-db/228011
land_sea_masklsm(0 - 1)https://codes.ecmwf.int/grib/param-db/172
large_scale_precipitationlspmhttps://codes.ecmwf.int/grib/param-db/3062
large_scale_precipitation_fractionlspfshttps://codes.ecmwf.int/grib/param-db/50
large_scale_rain_ratelsrrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228219
large_scale_snowfalllsfm of water equivalenthttps://codes.ecmwf.int/grib/param-db/240
large_scale_snowfall_rate_water_equivalentlssfrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228221
leaf_area_index_high_vegetationlai_hvm2 m-2https://codes.ecmwf.int/grib/param-db/67
leaf_area_index_low_vegetationlai_lvm2 m-2https://codes.ecmwf.int/grib/param-db/66
low_cloud_coverlcc(0 - 1)https://codes.ecmwf.int/grib/param-db/3073
low_vegetation_covercvl(0 - 1)https://codes.ecmwf.int/grib/param-db/27
maximum_2m_temperature_since_previous_post_processingmx2tKhttps://codes.ecmwf.int/grib/param-db/201
maximum_individual_wave_heighthmaxmhttps://codes.ecmwf.int/grib/param-db/140218
maximum_total_precipitation_rate_since_previous_post_processingmxtprkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228226
mean_boundary_layer_dissipationmbldW m**-2https://codes.ecmwf.int/grib/param-db/235032
mean_convective_precipitation_ratemcprkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235030
mean_convective_snowfall_ratemcsrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235056
mean_direction_of_total_swellmdtsdegreeshttps://codes.ecmwf.int/grib/param-db/140238
mean_direction_of_wind_wavesmdwwdegreeshttps://codes.ecmwf.int/grib/param-db/500072
mean_eastward_gravity_wave_surface_stressmegwssN m**-2https://codes.ecmwf.int/grib/param-db/235045
mean_eastward_turbulent_surface_stressmetssN m**-2https://codes.ecmwf.int/grib/param-db/235041
mean_evaporation_ratemerkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235043
mean_gravity_wave_dissipationmgwdW m**-2https://codes.ecmwf.int/grib/param-db/235047
mean_large_scale_precipitation_fractionmlspfProportionhttps://codes.ecmwf.int/grib/param-db/235026
mean_large_scale_precipitation_ratemlsprkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235029
mean_large_scale_snowfall_ratemlssrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235057
mean_northward_gravity_wave_surface_stressmngwssN m**-2https://codes.ecmwf.int/grib/param-db/235046
mean_northward_turbulent_surface_stressmntssN m**-2https://codes.ecmwf.int/grib/param-db/235042
mean_period_of_total_swellmptsshttps://codes.ecmwf.int/grib/param-db/140239
mean_period_of_wind_wavesmpwwshttps://codes.ecmwf.int/grib/param-db/500074
mean_potential_evaporation_ratemperkg m**-2

编辑推荐精选

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

下拉加载更多