arco-era5

arco-era5

云优化和分析就绪的气象再分析数据

ARCO-ERA5项目对ERA5气象再分析数据进行云端优化和分析就绪处理。项目将GRIB格式转换为Zarr格式,并生成规则经纬度网格的版本,便于研究和机器学习应用。数据集涵盖地表和大气层关键气象变量,每月更新,提供全球高分辨率数据。用户可选择原始、云优化或分析就绪版本,满足不同需求。

ERA5气候数据云优化分析就绪数据集Github开源项目

Analysis-Ready, Cloud Optimized ERA5

Recipes for reproducing Analysis-Ready & Cloud Optimized (ARCO) ERA5 datasets.

IntroductionOverviewAnalysis Ready DataRaw Cloud Optimized DataProject roadmapHow to reproduceFAQsHow to cite this workLicense

Introduction

Our goal is to make a global history of the climate highly accessible in the cloud. To that end, we present a curated copy of the ERA5 corpus in Google Cloud Public Datasets.

<details> <summary>What is ERA5?</summary>

ERA5 is the fifth generation of ECMWF's Atmospheric Reanalysis. It spans atmospheric, land, and ocean variables. ERA5 is an hourly dataset with global coverage at 30km resolution (~0.28° x 0.28°), ranging from 1979 to the present. The total ERA5 dataset is about 5 petabytes in size.

Check out ECMWF's documentation on ERA5 for more.

</details> <details> <summary>What is a reanalysis?</summary>

A reanalysis is the "most complete picture currently possible of past weather and climate." Reanalyses are created from assimilation of a wide range of data sources via numerical weather prediction (NWP) models.

Read ECMWF's introduction to reanalysis for more.

</details>

So far, we have ingested meteorologically valuable variables for the land and atmosphere. From this, we have produced a cloud-optimized version of ERA5, in which we have converted grib data to Zarr with no other modifications. In addition, we have created "analysis-ready" versions on regular lat-lon grids, oriented towards common research & ML workflows.

This two-pronged approach for the data serves different user needs. Some researchers need full control over the interpolation of data for their analysis. Most will want a batteries-included dataset, where standard pre-processing and chunk optimization is already applied. In general, we ensure that every step in this pipeline is open and reproducible, to provide transparency in the provenance of all data.

Overview

LocationTypeDescription
$BUCKET/ar/Analysis ReadyAn ML-ready, unified (surface & atmospheric) version of the data in Zarr.
$BUCKET/co/Cloud OptimizedA port of gaussian-gridded ERA5 data to Zarr.
$BUCKET/raw/Raw DataAll raw grib & NetCDF data.

Files are updated from ECMWF on a monthly cadence (on roughly the 9th of each month) with a 3 month delay, which avoids including preliminary versions of ERA5. The date of the latest available data can be found by inspecting the "time" axis of each Zarr store.

Analysis Ready Data

These datasets have been regridded to a uniform 0.25° equiangular horizontal resolution to facilitate downstream analyses, e.g., with WeatherBench2.

0.25° Pressure and Surface Level Data

This dataset contains most pressure-level fields and all surface-level field regridded to a uniform 0.25° resolution. It is a superset of the data used to train GraphCast and NeuralGCM.

import xarray ar_full_37_1h = xarray.open_zarr( 'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3', chunks=None, storage_options=dict(token='anon'), )
  • Times: 00/to/23
  • Levels: 1/2/3/5/7/10/20/30/50/70/100/125/150/175/200/225/250/300/350/400/450/500/550/600/650/700/750/775/800/825/850/875/900/925/950/975/1000
  • Grid: equiangular lat-lon
  • Size: 2.05 PB
  • Chunking: {'time': 1, 'latitude': 721, 'longitude': 1440, 'level': 37}
  • Chunk size (per variable): 154 MB
<details> <summary>Data summary table</summary>
nameshort nameunitsdocs
100m_u_component_of_windu100m s**-1https://codes.ecmwf.int/grib/param-db/228246
100m_v_component_of_windv100m s**-1https://codes.ecmwf.int/grib/param-db/228247
10m_u_component_of_neutral_windu10nm s**-1https://codes.ecmwf.int/grib/param-db/228131
10m_u_component_of_windu10m s**-1https://codes.ecmwf.int/grib/param-db/165
10m_v_component_of_neutral_windv10nm s**-1https://codes.ecmwf.int/grib/param-db/228132
10m_v_component_of_windv10m s**-1https://codes.ecmwf.int/grib/param-db/166
10m_wind_gust_since_previous_post_processingfg10m s**-1https://codes.ecmwf.int/grib/param-db/175049
2m_dewpoint_temperatured2mKhttps://codes.ecmwf.int/grib/param-db/500018
2m_temperaturet2mKhttps://codes.ecmwf.int/grib/param-db/500013
air_density_over_the_oceansp140209kg m**-3https://codes.ecmwf.int/grib/param-db/140209
angle_of_sub_gridscale_orographyanorradianshttps://codes.ecmwf.int/grib/param-db/162
anisotropy_of_sub_gridscale_orographyisor~https://codes.ecmwf.int/grib/param-db/161
benjamin_feir_indexbfidimensionlesshttps://codes.ecmwf.int/grib/param-db/140253
boundary_layer_dissipationbldJ m**-2https://codes.ecmwf.int/grib/param-db/145
boundary_layer_heightblhmhttps://codes.ecmwf.int/grib/param-db/159
charnockchnk~https://codes.ecmwf.int/grib/param-db/148
clear_sky_direct_solar_radiation_at_surfacecdirJ m**-2https://codes.ecmwf.int/grib/param-db/228022
cloud_base_heightcbhmhttps://codes.ecmwf.int/grib/param-db/228023
coefficient_of_drag_with_wavescdwwdimensionlesshttps://codes.ecmwf.int/grib/param-db/140233
convective_available_potential_energycapeJ kg**-1https://codes.ecmwf.int/grib/param-db/59
convective_inhibitioncinJ kg**-1https://codes.ecmwf.int/grib/param-db/228001
convective_precipitationcpmhttps://codes.ecmwf.int/grib/param-db/228143
convective_rain_ratecrrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228218
convective_snowfallcsfm of water equivalenthttps://codes.ecmwf.int/grib/param-db/239
convective_snowfall_rate_water_equivalentcsfrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228220
downward_uv_radiation_at_the_surfaceuvbJ m**-2https://codes.ecmwf.int/grib/param-db/57
duct_base_heightdctbmhttps://codes.ecmwf.int/grib/param-db/228017
eastward_gravity_wave_surface_stresslgwsN m**-2 shttps://codes.ecmwf.int/grib/param-db/195
eastward_turbulent_surface_stressewssN m**-2 shttps://codes.ecmwf.int/grib/param-db/180
evaporationem of water equivalenthttps://codes.ecmwf.int/grib/param-db/182
forecast_albedofal(0 - 1)https://codes.ecmwf.int/grib/param-db/243
forecast_logarithm_of_surface_roughness_for_heatflsr~https://codes.ecmwf.int/grib/param-db/245
forecast_surface_roughnessfsrmhttps://codes.ecmwf.int/grib/param-db/244
fraction_of_cloud_covercc(0 - 1)https://codes.ecmwf.int/grib/param-db/248
free_convective_velocity_over_the_oceansp140208m s**-1
friction_velocityzustm s**-1https://codes.ecmwf.int/grib/param-db/228003
geopotential_at_surfacezm2 s-2https://codes.ecmwf.int/grib/param-db/129
gravity_wave_dissipationgwdJ m**-2https://codes.ecmwf.int/grib/param-db/197
high_cloud_coverhcc(0 - 1)https://codes.ecmwf.int/grib/param-db/3075
high_vegetation_covercvh(0 - 1)https://codes.ecmwf.int/grib/param-db/28
ice_temperature_layer_1istl1Khttps://codes.ecmwf.int/grib/param-db/35
ice_temperature_layer_2istl2Khttps://codes.ecmwf.int/grib/param-db/36
ice_temperature_layer_3istl3Khttps://codes.ecmwf.int/grib/param-db/37
ice_temperature_layer_4istl4Khttps://codes.ecmwf.int/grib/param-db/38
instantaneous_10m_wind_gusti10fgm s**-1https://codes.ecmwf.int/grib/param-db/228029
instantaneous_eastward_turbulent_surface_stressiewsN m**-2https://codes.ecmwf.int/grib/param-db/229
instantaneous_large_scale_surface_precipitation_fractionilspf(0 - 1)https://codes.ecmwf.int/grib/param-db/228217
instantaneous_moisture_fluxiekg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/232
instantaneous_northward_turbulent_surface_stressinssN m**-2https://codes.ecmwf.int/grib/param-db/230
instantaneous_surface_sensible_heat_fluxishfW m**-2https://codes.ecmwf.int/grib/param-db/231
k_indexkxKhttps://codes.ecmwf.int/grib/param-db/260121
lake_bottom_temperaturelbltKhttps://codes.ecmwf.int/grib/param-db/228010
lake_covercl(0 - 1)https://codes.ecmwf.int/grib/param-db/26
lake_depthdlmhttps://codes.ecmwf.int/grib/param-db/228007
lake_ice_depthlicdmhttps://codes.ecmwf.int/grib/param-db/228014
lake_ice_temperaturelictKhttps://codes.ecmwf.int/grib/param-db/228013
lake_mix_layer_depthlmldmhttps://codes.ecmwf.int/grib/param-db/228009
lake_mix_layer_temperaturelmltKhttps://codes.ecmwf.int/grib/param-db/228008
lake_shape_factorlshfdimensionlesshttps://codes.ecmwf.int/grib/param-db/228012
lake_total_layer_temperatureltltKhttps://codes.ecmwf.int/grib/param-db/228011
land_sea_masklsm(0 - 1)https://codes.ecmwf.int/grib/param-db/172
large_scale_precipitationlspmhttps://codes.ecmwf.int/grib/param-db/3062
large_scale_precipitation_fractionlspfshttps://codes.ecmwf.int/grib/param-db/50
large_scale_rain_ratelsrrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228219
large_scale_snowfalllsfm of water equivalenthttps://codes.ecmwf.int/grib/param-db/240
large_scale_snowfall_rate_water_equivalentlssfrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228221
leaf_area_index_high_vegetationlai_hvm2 m-2https://codes.ecmwf.int/grib/param-db/67
leaf_area_index_low_vegetationlai_lvm2 m-2https://codes.ecmwf.int/grib/param-db/66
low_cloud_coverlcc(0 - 1)https://codes.ecmwf.int/grib/param-db/3073
low_vegetation_covercvl(0 - 1)https://codes.ecmwf.int/grib/param-db/27
maximum_2m_temperature_since_previous_post_processingmx2tKhttps://codes.ecmwf.int/grib/param-db/201
maximum_individual_wave_heighthmaxmhttps://codes.ecmwf.int/grib/param-db/140218
maximum_total_precipitation_rate_since_previous_post_processingmxtprkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/228226
mean_boundary_layer_dissipationmbldW m**-2https://codes.ecmwf.int/grib/param-db/235032
mean_convective_precipitation_ratemcprkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235030
mean_convective_snowfall_ratemcsrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235056
mean_direction_of_total_swellmdtsdegreeshttps://codes.ecmwf.int/grib/param-db/140238
mean_direction_of_wind_wavesmdwwdegreeshttps://codes.ecmwf.int/grib/param-db/500072
mean_eastward_gravity_wave_surface_stressmegwssN m**-2https://codes.ecmwf.int/grib/param-db/235045
mean_eastward_turbulent_surface_stressmetssN m**-2https://codes.ecmwf.int/grib/param-db/235041
mean_evaporation_ratemerkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235043
mean_gravity_wave_dissipationmgwdW m**-2https://codes.ecmwf.int/grib/param-db/235047
mean_large_scale_precipitation_fractionmlspfProportionhttps://codes.ecmwf.int/grib/param-db/235026
mean_large_scale_precipitation_ratemlsprkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235029
mean_large_scale_snowfall_ratemlssrkg m**-2 s**-1https://codes.ecmwf.int/grib/param-db/235057
mean_northward_gravity_wave_surface_stressmngwssN m**-2https://codes.ecmwf.int/grib/param-db/235046
mean_northward_turbulent_surface_stressmntssN m**-2https://codes.ecmwf.int/grib/param-db/235042
mean_period_of_total_swellmptsshttps://codes.ecmwf.int/grib/param-db/140239
mean_period_of_wind_wavesmpwwshttps://codes.ecmwf.int/grib/param-db/500074
mean_potential_evaporation_ratemperkg m**-2

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多