可配置的模块化RAG框架。
GoMate是一款配置化模块化的检索增强生成(RAG)框架,旨在提供可靠的输入与可信的输出,确保用户在检索问答场景中能够获得高质量且可信赖的结果。
GoMate框架的设计核心在于其高度的可配置性和模块化,使得用户可以根据具体需求灵活调整和优化各个组件,以满足各种应用场景的要求。

"可靠的输入,可信的输出"
text、docx、ppt、excel、html、pdf、md等DenseRetriever,支持索引构建、增量追加以及索引保存,保存内容包括文档、向量以及索引ReRank的BGE排序、Rewriter的HyDEJudge的BgeJudge,判断文章是否有用 20240711pip install -r requirements.txt
目前支持解析的文件类型包括:text、docx、ppt、excel、html、pdf、md
from gomate.modules.document.common_parser import CommonParser parser = CommonParser() document_path = 'docs/夏至各地习俗.docx' chunks = parser.parse(document_path) print(chunks)
import pandas as pd from tqdm import tqdm from gomate.modules.retrieval.dense_retriever import DenseRetriever, DenseRetrieverConfig retriever_config = DenseRetrieverConfig( model_name_or_path="bge-large-zh-v1.5", dim=1024, index_dir='dense_cache' ) config_info = retriever_config.log_config() print(config_info) retriever = DenseRetriever(config=retriever_config) data = pd.read_json('docs/zh_refine.json', lines=True)[:5] print(data) print(data.columns) retriever.build_from_texts(documents)
保存索引
retriever.save_index()
result = retriever.retrieve("RCEP具体包括哪些国家") print(result)
from gomate.modules.generator.llm import GLMChat chat = GLMChat(path='THUDM/chatglm3-6b') print(chat.chat(question, [], content))
for documents in tqdm(data['positive'], total=len(data)): for document in documents: retriever.add_text(document) for documents in tqdm(data['negative'], total=len(data)): for document in documents: retriever.add_text(document)
构建自定义的RAG应用
import os from gomate.modules.document.common_parser import CommonParser from gomate.modules.generator.llm import GLMChat from gomate.modules.reranker.bge_reranker import BgeReranker from gomate.modules.retrieval.dense_retriever import DenseRetriever class RagApplication(): def __init__(self, config): pass def init_vector_store(self): pass def load_vector_store(self): pass def add_document(self, file_path): pass def chat(self, question: str = '', topk: int = 5): pass
模块可见rag.py
可以配置本地模型路径
# 修改成自己的配置!!! app_config = ApplicationConfig() app_config.docs_path = "./docs/" app_config.llm_model_path = "/data/users/searchgpt/pretrained_models/chatglm3-6b/" retriever_config = DenseRetrieverConfig( model_name_or_path="/data/users/searchgpt/pretrained_models/bge-large-zh-v1.5", dim=1024, index_dir='/data/users/searchgpt/yq/GoMate/examples/retrievers/dense_cache' ) rerank_config = BgeRerankerConfig( model_name_or_path="/data/users/searchgpt/pretrained_models/bge-reranker-large" ) app_config.retriever_config = retriever_config app_config.rerank_config = rerank_config application = RagApplication(app_config) application.init_vector_store()
python app.py
浏览器访问:127.0.0.1:7860

app后台日志:

本项目由网络数据科学与技术重点实验室GoMate团队完成,团队指导老师为郭嘉丰、范意兴研究员。
GoMate技术交流群可添加:1185918903(微信)