go-carbon

go-carbon

Golang实现的高性能Graphite服务器

go-carbon项目采用Golang重新实现了Graphite服务器,保留了Agent、Cache、Persister的经典架构。该项目支持通过TCP、UDP、HTTP和Kafka等多种协议接收指标数据,并提供存储模式配置、数据聚合、缓存管理和多核心持久化等核心功能。测试表明,go-carbon在处理性能上全面超越了默认的carbon实现,能够有效应对大规模指标数据的处理需求。其优化的设计使其能够高效处理每分钟数十万计的指标数据。

go-carbonGraphite指标处理性能优化配置管理Github开源项目

deb rpm

Table of Contents

go-carbon Build Status

Golang implementation of Graphite/Carbon server with classic architecture: Agent -> Cache -> Persister

Architecture

Features

  • Receive metrics from TCP and UDP (plaintext protocol)
  • Receive metrics with Pickle protocol (TCP only)
  • Receive metrics from HTTP
  • Receive metrics from Apache Kafka
  • storage-schemas.conf
  • storage-aggregation.conf
  • Carbonlink (requests to cache from graphite-web)
  • Carbonlink-like GRPC api
  • Logging with rotation support (reopen log if it moves)
  • Many persister workers (using many cpu cores)
  • Run as daemon
  • Optional dump/restore restart on USR2 signal (config dump section): stop persister, start write new data to file, dump cache to file, stop all (and restore from files after next start)
  • Reload some config options without restart (HUP signal):
    • whisper section of main config, storage-schemas.conf and storage-aggregation.conf
    • graph-prefix, metric-interval, metric-endpoint, max-cpu from common section
    • dump section

Performance

Faster than default carbon. In all conditions :) How much faster depends on server hardware, storage-schemas, etc.

The result of replacing "carbon" to "go-carbon" on a server with a load up to 900 thousand metric per minute:

Success story

There were some efforts to find out maximum possible performance of go-carbon on a hardware (2xE5-2620v3, 128GB RAM, local SSDs).

The result of that effort (in points per second):

Performance

Stable performance was around 950k points per second with short-term peak performance of 1.2M points/sec.

Efficient metric namespace patterns for trie index

Putting the most common namespaces at the beginning of the metric name could be beneficial for scaling. This doesn't affect the performance of trigram index. But when you decide to switch to trie index for serving higher number metrics in a single go-carbon instance, your query would be more efficient. At the same time, this naming pattern could lead to better metric namespace hierarchy.

For example: querying sys.cpu.loadavg.app.host-0001 would be faster than querying sys.app.host-0001.cpu.loadavg using trie index. Especially when you have tens of thousands hosts (host-0001, ..., host-9999), they all share the same prefix of sys.cpu.loadavg.app.host- in trie index, and they are compared only once during query. So this patterns leads to better memory usage and query performance when using trie+nfa/dfa index.

More details could be found in this blog: To glob 10M metrics: Trie * DFA = Tree² for Go-Carbon.

Installation

Use binary packages from releases page or build manually (requires golang 1.8+):

# build binary
git clone https://github.com/go-graphite/go-carbon.git
cd go-carbon
make

We are using <a href="https://packagecloud.io/"><img alt="Private Maven, RPM, DEB, PyPi and RubyGem Repository | packagecloud" height="46" src="https://packagecloud.io/images/packagecloud-badge.png" width="158" /></a> to host our packages!

At this moment we are building deb and rpm packages for i386, amd64 and arm64 architectures. Installation guides are available on packagecloud (see the links below).

Stable versions: Stable repo

Autobuilds (master, might be unstable): Autobuild repo

We're uploading Docker images to ghcr.io

Also, you can download test packages from build artifacts: Go to list of test runs, click on PR name, and click on "packages-^1" under "Artifact" section.

Configuration

$ go-carbon --help
Usage of go-carbon:
  -check-config=false: Check config and exit
  -config="": Filename of config
  -config-print-default=false: Print default config
  -daemon=false: Run in background
  -pidfile="": Pidfile path (only for daemon)
  -version=false: Print version
[common] # Run as user. Works only in daemon mode user = "carbon" # Prefix for store all internal go-carbon graphs. Supported macroses: {host} graph-prefix = "carbon.agents.{host}" # Endpoint to store internal carbon metrics. Valid values: "" or "local", "tcp://host:port", "udp://host:port" metric-endpoint = "local" # Interval of storing internal metrics. Like CARBON_METRIC_INTERVAL metric-interval = "1m0s" # Increase for configuration with multi persister workers max-cpu = 4 [whisper] data-dir = "/var/lib/graphite/whisper" # http://graphite.readthedocs.org/en/latest/config-carbon.html#storage-schemas-conf. Required schemas-file = "/etc/go-carbon/storage-schemas.conf" # http://graphite.readthedocs.org/en/latest/config-carbon.html#storage-aggregation-conf. Optional aggregation-file = "/etc/go-carbon/storage-aggregation.conf" # It's currently go-carbon only feature, not a standard graphite feature. Optional # More details in doc/quotas.md # quotas-file = "/etc/go-carbon/storage-quotas.conf" # Worker threads count. Metrics sharded by "crc32(metricName) % workers" workers = 8 # Limits the number of whisper update_many() calls per second. 0 - no limit max-updates-per-second = 0 # Sparse file creation sparse-create = false # use flock on every file call (ensures consistency if there are concurrent read/writes to the same file) flock = true enabled = true # Use hashed filenames for tagged metrics instead of human readable # https://github.com/go-graphite/go-carbon/pull/225 hash-filenames = true # specify to enable/disable compressed format (EXPERIMENTAL) # See details and limitations in https://github.com/go-graphite/go-whisper#compressed-format # IMPORTANT: Only one process/thread could write to compressed whisper files at a time, especially when you are # rebalancing graphite clusters (with buckytools, for example), flock needs to be enabled both in go-carbon and your tooling. compressed = false # automatically delete empty whisper file caused by edge cases like server reboot remove-empty-file = false # Enable online whisper file config migration. # # online-migration-rate means metrics per second to migrate. # # To partially enable default migration for only some matched rules in # storage-schemas.conf or storage-aggregation.conf, we can set # online-migration-global-scope = "-" and enable the migration in the config # files (more examples in deploy/storage-aggregation.conf and deploy/storage-schemas.conf). # # online-migration-global-scope can also be set any combination of the 3 rules # (xff,aggregationMethod,schema) as a csv string # like: "xff", "xff,aggregationMethod", "xff,schema", # or "xff,aggregationMethod,schema". # # online-migration = false # online-migration-rate = 5 # online-migration-global-scope = "-" [cache] # Limit of in-memory stored points (not metrics) max-size = 1000000 # Capacity of queue between receivers and cache # Strategy to persist metrics. Values: "max","sorted","noop" # "max" - write metrics with most unwritten datapoints first # "sorted" - sort by timestamp of first unwritten datapoint. # "noop" - pick metrics to write in unspecified order, # requires least CPU and improves cache responsiveness write-strategy = "max" # If > 0 use bloom filter to detect new metrics instead of cache bloom-size = 0 [udp] listen = ":2003" enabled = true # Optional internal queue between receiver and cache buffer-size = 0 [tcp] listen = ":2003" enabled = true # Optional internal queue between receiver and cache buffer-size = 0 [pickle] listen = ":2004" # Limit message size for prevent memory overflow max-message-size = 67108864 enabled = true # Optional internal queue between receiver and cache buffer-size = 0 # You can define unlimited count of additional receivers # Common definition scheme: # [receiver.<any receiver name>] # protocol = "<any supported protocol>" # <protocol specific options> # # All available protocols: # # [receiver.udp2] # protocol = "udp" # listen = ":2003" # # Enable optional logging of incomplete messages (chunked by max UDP packet size) # log-incomplete = false # # [receiver.tcp2] # protocol = "tcp" # listen = ":2003" # # [receiver.pickle2] # protocol = "pickle" # listen = ":2004" # # Limit message size for prevent memory overflow # max-message-size = 67108864 # # [receiver.protobuf] # protocol = "protobuf" # # Same framing protocol as pickle, but message encoded in protobuf format # # See https://github.com/go-graphite/go-carbon/blob/master/helper/carbonpb/carbon.proto # listen = ":2005" # # Limit message size for prevent memory overflow # max-message-size = 67108864 # # [receiver.http] # protocol = "http" # # This receiver receives data from POST requests body. # # Data can be encoded in plain text format (default), # # protobuf (with Content-Type: application/protobuf header) or # # pickle (with Content-Type: application/python-pickle header). # listen = ":2007" # max-message-size = 67108864 # # [receiver.kafka] # protocol = "kafka # # This receiver receives data from kafka # # You can use Partitions and Topics to do sharding # # State is saved in local file to avoid problems with multiple consumers # # # Encoding of messages # # Available options: "plain" (default), "protobuf", "pickle" # # Please note that for "plain" you must pass metrics with leading "\n". # # e.x. # # echo "test.metric $(date +%s) $(date +%s)" | kafkacat -D $'\0' -z snappy -T -b localhost:9092 -t graphite # parse-protocol = "protobuf" # # Kafka connection parameters # brokers = [ "host1:9092", "host2:9092" ] # topic = "graphite" # partition = 0 # # # Specify how often receiver will try to connect to kafka in case of network problems # reconnect-interval = "5m" # # How often receiver will ask Kafka for new data (in case there was no messages available to read) # fetch-interval = "200ms" # # # Path to saved kafka state. Used for restarts # state-file = "/var/lib/graphite/kafka.state" # # Initial offset, if there is no saved state. Can be relative time or "newest" or "oldest". # # In case offset is unavailable (in future, etc) fallback is "oldest" # initial-offset = "-30m" # # # Specify kafka feature level (default: 0.11.0.0). # # Please note that some features (consuming lz4 compressed streams) requires kafka >0.11 # # You must specify version in full. E.x. '0.11.0.0' - ok, but '0.11' is not. # # Supported version (as of 22 Jan 2018): # # 0.8.2.0 # # 0.8.2.1 # # 0.8.2.2 # # 0.9.0.0 # # 0.9.0.1 # # 0.10.0.0 # # 0.10.0.1 # # 0.10.1.0 # # 0.10.2.0 # # 0.11.0.0 # # 1.0.0 # kafka-version = "0.11.0.0" # # [receiver.pubsub] # # This receiver receives data from Google PubSub # # - Authentication is managed through APPLICATION_DEFAULT_CREDENTIALS: # # - https://cloud.google.com/docs/authentication/production#providing_credentials_to_your_application # # - Currently the subscription must exist before running go-carbon. # # - The "receiver_*" settings are optional and directly map to the google pubsub # # libraries ReceiveSettings (https://godoc.org/cloud.google.com/go/pubsub#ReceiveSettings) # # - How to think about the "receiver_*" settings: In an attempt to maximize throughput the # # pubsub library will spawn 'receiver_go_routines' to fetch messages from the server. # # These goroutines simply buffer them into memory until 'receiver_max_messages' or 'receiver_max_bytes' # # have been read. This does not affect the actual handling of these messages which are processed by other goroutines. # protocol = "pubsub" # project = "project-name" # subscription = "subscription-name" # receiver_go_routines = 4 # receiver_max_messages = 1000 # receiver_max_bytes = 500000000 # default 500MB [carbonlink] listen = "127.0.0.1:7002" enabled = true # Close inactive connections after "read-timeout" read-timeout = "30s" # grpc api # protocol: https://github.com/go-graphite/go-carbon/blob/master/helper/carbonpb/carbon.proto # samples: https://github.com/go-graphite/go-carbon/tree/master/api/sample [grpc] listen = "127.0.0.1:7003" enabled = true # http://graphite.readthedocs.io/en/latest/tags.html [tags] enabled = false # TagDB url. It should support /tags/tagMultiSeries endpoint tagdb-url = "http://127.0.0.1:8000" tagdb-chunk-size = 32 tagdb-update-interval = 100 # Directory for send queue (based on leveldb) local-dir = "/var/lib/graphite/tagging/" # POST timeout tagdb-timeout = "1s" [carbonserver] # Please NOTE: carbonserver is not intended to fully replace graphite-web # It acts as a "REMOTE_STORAGE" for graphite-web or carbonzipper/carbonapi listen = "127.0.0.1:8080" # Carbonserver support is still experimental and may contain bugs # Or be incompatible with github.com/grobian/carbonserver enabled = false # Buckets to track response times buckets = 10 # carbonserver-specific metrics will be sent as counters # For compatibility with grobian/carbonserver metrics-as-counters = false # Read and Write timeouts for HTTP server read-timeout = "60s" write-timeout = "60s" # Request timeout for each API call request-timeout = "60s" # Enable /render cache, it will cache the result for 1 minute query-cache-enabled = true # Hard limits the number of whisper files that get created each second. 0 - no limit `max-creates-per-second` = 0 # Enable carbonV2 gRPC streaming render cache, it will cache the result for 1 minute streaming-query-cache-enabled = false # 0 for unlimited query-cache-size-mb = 0 # Enable /metrics/find cache, it will cache the result for 5 minutes find-cache-enabled = true # Control trigram index # This index is used to speed-up /find requests # However, it will lead to increased memory consumption # Estimated memory consumption is approx. 500 bytes per each metric on disk # Another drawback is that it will recreate index every scan-frequency interval # All new/deleted metrics will still be searchable until index is recreated trigram-index = true # carbonserver keeps track of all available whisper files in memory. # This determines how often it will check FS for new or deleted metrics. # If you only use the trie index, have

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多