slonik

slonik

Node.js PostgreSQL客户端 提供严格类型检查和详细查询日志

Slonik是一个经过实战检验的Node.js PostgreSQL客户端,提供严格的类型检查和详细的查询日志。它支持原生SQL编写,具有运行时验证、安全的连接和事务处理、值插值保护等特性。Slonik还提供异步堆栈跟踪解析、中间件和错误映射功能,为开发者提供安全可靠的PostgreSQL数据库交互工具。

SlonikPostgreSQLNode.jsSQL数据库Github开源项目

Slonik

NPM version Canonical Code Style Twitter Follow

A battle-tested Node.js PostgreSQL client with strict types, detailed logging and assertions.

Tailing Slonik logs

(The above GIF shows Slonik producing query logs. Slonik produces logs using Roarr. Logs include stack trace of the actual query invocation location and values used to execute the query.)

Sponsors

If you value my work and want to see Slonik and many other of my Open-Source projects to be continuously improved, then please consider becoming a patron:

Buy Me A Coffee Become a Patron

Principles

  • Promotes writing raw SQL.
  • Discourages ad-hoc dynamic generation of SQL.

Read: Stop using Knex.js

Note: Using this project does not require TypeScript. It is a regular ES6 module. Ignore the type definitions used in the documentation if you do not use a type system.

Features

Contents

About Slonik

Battle-Tested

Slonik began as a collection of utilities designed for working with node-postgres. It continues to use node-postgres driver as it provides a robust foundation for interacting with PostgreSQL. However, what once was a collection of utilities has since grown into a framework that abstracts repeating code patterns, protects against unsafe connection handling and value interpolation, and provides a rich debugging experience.

Slonik has been battle-tested with large data volumes and queries ranging from simple CRUD operations to data-warehousing needs.

Origin of the name

Slonik

The name of the elephant depicted in the official PostgreSQL logo is Slonik. The name itself is derived from the Russian word for "little elephant".

Read: The History of Slonik, the PostgreSQL Elephant Logo

Repeating code patterns and type safety

Among the primary reasons for developing Slonik, was the motivation to reduce the repeating code patterns and add a level of type safety. This is primarily achieved through the methods such as one, many, etc. But what is the issue? It is best illustrated with an example.

Suppose the requirement is to write a method that retrieves a resource ID given values defining (what we assume to be) a unique constraint. If we did not have the aforementioned helper methods available, then it would need to be written as:

import { sql, type DatabaseConnection } from 'slonik'; type DatabaseRecordIdType = number; const getFooIdByBar = async (connection: DatabaseConnection, bar: string): Promise<DatabaseRecordIdType> => { const fooResult = await connection.query(sql.typeAlias('id')` SELECT id FROM foo WHERE bar = ${bar} `); if (fooResult.rowCount === 0) { throw new Error('Resource not found.'); } if (fooResult.rowCount > 1) { throw new Error('Data integrity constraint violation.'); } return fooResult[0].id; };

oneFirst method abstracts all of the above logic into:

const getFooIdByBar = (connection: DatabaseConnection, bar: string): Promise<DatabaseRecordIdType> => { return connection.oneFirst(sql.typeAlias('id')` SELECT id FROM foo WHERE bar = ${bar} `); };

oneFirst throws:

  • NotFoundError if query returns no rows
  • DataIntegrityError if query returns multiple rows
  • DataIntegrityError if query returns multiple columns

In the absence of helper methods, the overhead of repeating code becomes particularly visible when writing routines where multiple queries depend on the proceeding query results. Using methods with inbuilt assertions ensures that in case of an error, the error points to the source of the problem. In contrast, unless assertions for all possible outcomes are typed out as in the previous example, the unexpected result of the query will be fed to the next operation. If you are lucky, the next operation will simply break; if you are unlucky, you are risking data corruption and hard-to-locate bugs.

Furthermore, using methods that guarantee the shape of the results allows us to leverage static type checking and catch some of the errors even before executing the code, e.g.

const fooId = await connection.many(sql.typeAlias('id')` SELECT id FROM foo WHERE bar = ${bar} `); await connection.query(sql.typeAlias('void')` DELETE FROM baz WHERE foo_id = ${fooId} `);

Static type check of the above example will produce a warning as the fooId is guaranteed to be an array and binding of the last query is expecting a primitive value.

Protecting against unsafe connection handling

Slonik only allows to check out a connection for the duration of the promise routine supplied to the pool#connect() method.

The primary reason for implementing only this connection pooling method is because the alternative is inherently unsafe, e.g.

// This is not valid Slonik API const main = async () => { const connection = await pool.connect(); await connection.query(sql.typeAlias('foo')`SELECT foo()`); await connection.release(); };

In this example, if SELECT foo() produces an error, then connection is never released, i.e. the connection hangs indefinitely.

A fix to the above is to ensure that connection#release() is always called, i.e.

// This is not valid Slonik API const main = async () => { const connection = await pool.connect(); let lastExecutionResult; try { lastExecutionResult = await connection.query(sql.typeAlias('foo')`SELECT foo()`); } finally { await connection.release(); } return lastExecutionResult; };

Slonik abstracts the latter pattern into pool#connect() method.

const main = () => { return pool.connect((connection) => { return connection.query(sql.typeAlias('foo')`SELECT foo()`); }); };

Using this pattern, we guarantee that connection is always released as soon as the connect() routine resolves or is rejected.

Resetting connection state

After the connection is released, Slonik resets the connection state. This is to prevent connection state from leaking between queries.

The default behaviour is to execute DISCARD ALL command. This behaviour can be adjusted by configuring resetConnection routine, e.g.

import { createPool, sql } from 'slonik'; const pool = createPool('postgres://', { resetConnection: async (connection) => { await connection.query('DISCARD ALL'); } });

[!NOTE] Reseting a connection is a heavy operation. Depending on the application requirements, it may make sense to disable connection reset, e.g.

import { createPool, } from 'slonik'; const pool = createPool('postgres://', { resetConnection: async () => {} });

Protecting against unsafe transaction handling

Just like in the unsafe connection handling example, Slonik only allows to create a transaction for the duration of the promise routine supplied to the connection#transaction() method.

connection.transaction(async (transactionConnection) => { await transactionConnection.query(sql.typeAlias('void')`INSERT INTO foo (bar) VALUES ('baz')`); await transactionConnection.query(sql.typeAlias('void')`INSERT INTO qux (quux) VALUES ('quuz')`); });

This pattern ensures that the transaction is either committed or aborted the moment the promise is either resolved or rejected.

[!NOTE] If you receive an error UnexpectedForeignConnectionError, then you are trying to execute a query using a connection that is not associated with the transaction. This error is thrown to prevent accidental unsafe transaction handling, e.g.

pool.transaction(async (transactionConnection) => { await pool.query(sql.typeAlias('void')`INSERT INTO foo (bar) VALUES ('baz')`); });

In this example, the query is executed using the connection that is not associated with the transaction. This is unsafe because the query is not part of the transaction and will not be rolled back if the transaction is aborted. This behaviour can be disabled by setting dangerouslyAllowForeignConnections to true in the ClientConfiguration.

Protecting against unsafe value interpolation

SQL injections are one of the most well known attack vectors. Some of the biggest data leaks were the consequence of improper user-input handling. In general, SQL injections are easily preventable by using parameterization and by restricting database permissions, e.g.

// This is not valid Slonik API connection.query('SELECT $1', [ userInput ]);

In this example, the query text (SELECT $1) and parameters (userInput) are passed separately to the PostgreSQL server where the parameters are safely substituted into the query. This is a safe way to execute a query using user-input.

The vulnerabilities appear when developers cut corners or when they do not know about parameterization, i.e. there is a risk that someone will instead write:

// This is not valid Slonik API connection.query('SELECT \'' + userInput + '\'');

As evident by the history of the data leaks, this happens more often than anyone would like to admit. This security vulnerability is especially a significant risk in Node.js community, where a predominant number of developers are coming from frontend and have not had training working with RDBMSes. Therefore, one of the key selling points of Slonik is that it adds multiple layers of protection to prevent unsafe handling of user input.

To begin with, Slonik does not allow running plain-text queries.

// This is not valid Slonik API connection.query('SELECT

编辑推荐精选

潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

下拉加载更多