AnimationGPT

AnimationGPT

基于文本生成战斗风格角色动画的开源项目

AnimationGPT是一个开源项目,致力于基于文本生成战斗风格的角色动画。该项目基于MotionGPT技术,开发了首个专用于战斗风格的角色动画数据集CombatMotion。项目提供了经处理的CMP数据集和原始CMR数据集,并使用多种算法训练了模型。通过生成多样化、高质量的战斗动画,AnimationGPT为游戏开发和动画制作领域带来了新的可能性。

AnimationGPT文本生成动画CombatMotion动作数据集MotionGPTGithub开源项目

AnimationGPT

<p align="center"> <!-- Project Page Link --> <a href="http://www.animationgpt.net" style="text-decoration: none;"> <img src="https://img.shields.io/badge/Project-Page-black?style=flat" alt="Project Page"> </a> <!-- Zhihu Link --> <a href="https://zhuanlan.zhihu.com/p/691984079" style="text-decoration: none;"> <img src="https://img.shields.io/badge/Zhihu-Article-0084FF?style=flat&logo=zhihu&logoColor=white" alt="Zhihu"> </a> <!-- Bilibili Code Link --> <a href="https://www.bilibili.com/video/BV1yt421j7nR" style="text-decoration: none;"> <img src="https://img.shields.io/badge/Bilibili-Video-4EABE6?style=flat&logo=Bilibili&logoColor=4EABE6" alt="Bilibili"> </a> </p>

AnimationGPT is a project focused on generating combat style character animations based on text. This project is trained on the MotionGPT and has produced the first character animation dataset dedicated to combat styles, named CombatMotion, which comes with textual descriptions.

<video width="100%" height="auto" controls> <source src="README.assets/videoDemo.mp4" type="video/mp4"> </video>

Compare to current text-to-motion dataset

DatasetMotionsTextsStyleSource
KIT-ML3,9116,278Daily LifeMotion Capture
HumanML3D14,61644,970Daily LifeMotion Capture
Motion-X81,08481,084Daily LifeVideo Reconstruction
CMP8,70026,100CombatGame
CMR14,88314,883CombatGame

Compared to the current text-to-motion datasets, CombatMotion has the following characteristics:

  1. Derived from game assets.
  2. Features a fighting style, where the animation style in action games tends to be concentrated, and the types of actions are biased.
  3. More detailed textual annotations.

Combat Motion Dataset

Pipline

  1. Obtain game assets in FBX format, redirect them to SMPL, and read the coordinates of human body joints (refer to Fbx2SMPL);

  2. Add textual annotations. For each animation, manually annotate it from the following aspects: action type, weapon type, attack type, locational words, power descriptor words, speed descriptor words, and confusion descriptor words. A partial list of terms is shown below:

    Action typeWeapon typeAttack typeLocative wordsPowerSpeedFuzzy
    IdleBare HandLeft-HandedIn-PlaceLight-WeightedSwiftPiercing
    Get HitSacred SealRight-HandedTowards LeftSteadyRelative FastSlash
    DeathFistOne-HandedTowards RightHeavy-WeightedUniform SpeedBlunt

    Then, use GPT-4 to combine these annotations into sentences.

    exampleannotation

    The diagram above outlines our annotation process. Initially, we fill in seven key descriptive words based on the characteristics of the animation, followed by writing posture description sentences. Subsequently, we use a large language model to integrate these elements into several complete natural language sentences. Finally, we select the sentence that best meets our requirements as the annotation result.

  3. Process the animation and annotated data into a format compatible with HumanML3D.

CombatMotionProcessed Dataset(CMP)

Download: google drive

CombatMotionProcessed(CMP) is a refined dataset that, in terms of character animation, retains 8,700 high-quality animations with a strong fighting style. In terms of textual annotations, we provide three text annotations for each animation: a concise description, a concise description with sensory details, and a detailed description.

Taking CMP008388 as an example, its corresponding text annotations are:

weapon attack a man holding a Katana,executing a Charged Heavy Attack,Dual Wielding,root motion get Forward, Steady,Powerful and Relative Slow,First slow then fast,Cleanly.
weapon attack a man holding a Katana,executing a Charged Heavy Attack,Dual Wielding,root motion get Forward, Steady,Powerful and Relative Slow,First slow then fast,Cleanly,which make a sense of Piercing,Wide Open,Charged,Accumulating strength.
The character grips the wedge with both hands and charges for a powerful strike. They firmly lower their body, twist to the left, lunge forward with a bow step, and stab with the sword held in both hands.

CombatMotionRaw Dataset(CMR)

Download: google drive

CombatMotionRaw (CMR) is an unrefined dataset containing 14,883 animation entries (CMP is a subset of CMR), but each animation is only provided with one textual annotation. Moreover, the textual annotations in CMR consist of simple concatenations of annotated words. It was found during project development that models trained with this type of annotation performed poorly, thus this format was ultimately not adopted.

Example of textual annotation:

weapon attack curved sword curved greatsword right-handed one-handed charged heavy attack forward steady powerful charged accumulating strength cleanly first slow then fast slash smooth and coherent wide open featherlike roundabout lean over and twist your waist to the left step forward with your right leg store your right hand from the left back swing it diagonally downward and swing two circles.

CMR has a richer set of animation data, unfortunately, the annotations are not detailed enough. You can read the textual annotations from the dataset yourself and refine them.

Model and Evaluation

Here are models trained on the CMP dataset using different algorithms:

Evaluation on CMP

MetricMotionGPTMLDMDM
Matching Score↓5.426 ± 0.0175.753 ± 0.0197.220 ± 0.018
Matching Score (Ground Truth)↓5.166 ± 0.0125.177 ± 0.0185.179 ± 0.013
R_precision (top 1)↑0.044 ± 0.0020.048 ± 0.0020.030 ± 0.001
R_precision (top 2)↑0.084 ± 0.0030.089 ± 0.0030.063 ± 0.002
R_precision (top 3)↑0.122 ± 0.0030.126 ± 0.0030.096 ± 0.002
R_precision (top 1)(Ground Truth)↑0.050 ± 0.0020.051 ± 0.0020.053 ± 0.002
R_precision (top 2)(Ground Truth)↑0.094 ± 0.0020.095 ± 0.0030.097 ± 0.003
R_precision (top 3)(Ground Truth)↑0.133 ± 0.0030.134 ± 0.0040.136 ± 0.004
FID↓0.531 ± 0.0181.240 ± 0.03640.395 ± 0.424
Diversity→5.143 ± 0.0525.269 ± 0.0443.364 ± 0.080
Diversity (Ground Truth)→5.188 ± 0.0705.200 ± 0.0495.191 ± 0.036
MultiModality ↑1.793 ± 0.0942.618 ± 0.1152.463 ± 0.102

Tutorial

  • If you need to train a model, please download the CMP dataset. Then, follow the tutorials for MotionGPT or other text-to-motion algorithms to set up the environment and train your model.

  • If you only need to use the AGPT model trained on the CMP dataset, please follow these steps:

    1. Set up the environment

      Our experimental environment is Ubuntu 22.04, NVIDIA GeForce RTX 4090, and CUDA 11.8

      git clone https://github.com/OpenMotionLab/MotionGPT.git
      cd MotionGPT
      conda create python=3.10 --name mgpt
      conda activate mgpt
      pip install -r requirements.txt
      python -m spacy download en_core_web_sm
      mkdir deps
      cd deps
      bash prepare/prepare_t5.sh
      bash prepare/download_t2m_evaluators.sh
      
    2. Download the CMP dataset

      Unzip the dataset into the datasets/humanml3d directory.

      .
      └── humanml3d
          ├── new_joint_vecs
          ├── new_joints
          └── texts
      
    3. Generate animations using the model

      • git clone https://github.com/fyyakaxyy/AnimationGPT.git

      • Copy the tools folder and config_AGPT.yaml into the MotionGPT directory

      • Download the AGPT model, place it in the MotionGPT directory

      • Save the prompt in input.txt

      • Run python demo.py --cfg ./config_AGPT.yaml --example ./input.txt

      The generated result is id_out.npy, stored in results/mgpt/debug--AGPT/

    4. File format conversion

      • Convert the generated npy files to mp4 files: modify the file path in tools/animation.py, then run: python animation.py
      • Convert the generated npy files to bvh files: modify the file path in tools/npy2bvh/joints2bvh.py, then run: python joints2bvh.py Note: The code for npy2bvh is sourced from Momask

Windows10 Tutorial

Use the AGPT model trained on the CMP dataset under Windows10:

  • When configuring the environment for MotionGPT (step 1), some packages may still be missing after using python=3.10.6 and installing requirements.txt, just follow the instructions to install them manually.

  • Windows file path separator and linux are different, some path errors need to be changed to the Win system separator, such as the separator '/' change to os.sep in the config.py

  • Convert the generated npy files to mp4 files under python=3.10 environment may report errors. The matplotlib library requires version 3.3.3, but the minimum supported library version of cp310 is 3.5.0. If you use a library version higher than 3.5.0, you will encounter the following error:

    ax.lines = [] AttributeError: can't set attribute

    ax.collections = [] AttributeError: can't set attribute

    ani.save "ValueError: unknown file extension: .mp4.

If you encounter only the first two errors when executing with matplotlib>=3.5.0, you can refer to this issue https://github.com/GuyTevet/motion-diffusion-model/issues/6.

If you are also experiencing unrecognized mp4 files, you need to additionally download ffmpeg, unzip it and modify these contents in tools/animation.py:

import matplotlib.pyplot as plt plt.rcParams['animation.ffmpeg_path'] = r'D:\\ffmpeg\\bin\\ffmpeg.exe' #ffmpeg floder from mpl_toolkits.mplot3d import Axes3D

If you have successfully generated a video file after resolving the error, but the video only has a white screen, please try switching to another python version to do the npy file format conversion. tools/requirements.txt provides the necessary dependencies for python=3.9.19 to work properly.

  • The following problems may be encountered when converting the generated npy files to bvh files

    1. Some packages are missing or numpy is reporting errors. Prioritize using python=3.9.19 and install the dependencies in tools/requirements.txt.

    2. tools/npy2bvh/joints2bvh.py is missing some package imports. Add this code:

      import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection import mpl_toolkits.mplot3d.axes3d as p3
    3. No such file or directory: './visualization/data/template.bvh'. Modify the following path to use the commented out version:

      self.template = BVH.load('./visualization/data/template.bvh', need_quater=True) #self.template = BVH.load(os.path.dirname(__file__) + '\\visualization\\data\\template.bvh', need_quater=True)
    4. index 1 is out of bounds for axis 1 with size 1. Make sure there is no _in.npy file in the path of the file you want to convert, just keep _out.npy to solve the problem.

Suggestions

During the process of dataset creation and model training/tuning, you might encounter some issues in aspects like textual annotations, model training, and data augmentation. Based on our experience, we offer the following suggestions:

Model Training Crashes Due to Errors in Textual Annotations

If you process data using the HumanML3D pipeline, you might encounter the following issues, which can lead to model training crashes:

  • The textual description contains Chinese characters or Chinese punctuation.
  • Some words fail to be successfully annotated with part-of-speech tags.
  • Certain mathematical symbols, such as the degree symbol "°", are recognized as abnormal characters.

Exploration of Textual Annotations

  • Adding descriptions of root motion direction in the annotated text can help the model learn directional words.
  • Adding frame number information to the annotated text does not enable the model to learn how to control the duration (or number of frames) of generation.
  • The more detailed the textual annotations and the greater the number of different annotations for the same animation, the better the performance of the model.

Mixed Training

Mixing the HumanML3D, KIT-ML, and CMP datasets for model training can result in significant improvements in evaluation metrics.

编辑推荐精选

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

下拉加载更多