AnimationGPT

AnimationGPT

基于文本生成战斗风格角色动画的开源项目

AnimationGPT是一个开源项目,致力于基于文本生成战斗风格的角色动画。该项目基于MotionGPT技术,开发了首个专用于战斗风格的角色动画数据集CombatMotion。项目提供了经处理的CMP数据集和原始CMR数据集,并使用多种算法训练了模型。通过生成多样化、高质量的战斗动画,AnimationGPT为游戏开发和动画制作领域带来了新的可能性。

AnimationGPT文本生成动画CombatMotion动作数据集MotionGPTGithub开源项目

AnimationGPT

<p align="center"> <!-- Project Page Link --> <a href="http://www.animationgpt.net" style="text-decoration: none;"> <img src="https://img.shields.io/badge/Project-Page-black?style=flat" alt="Project Page"> </a> <!-- Zhihu Link --> <a href="https://zhuanlan.zhihu.com/p/691984079" style="text-decoration: none;"> <img src="https://img.shields.io/badge/Zhihu-Article-0084FF?style=flat&logo=zhihu&logoColor=white" alt="Zhihu"> </a> <!-- Bilibili Code Link --> <a href="https://www.bilibili.com/video/BV1yt421j7nR" style="text-decoration: none;"> <img src="https://img.shields.io/badge/Bilibili-Video-4EABE6?style=flat&logo=Bilibili&logoColor=4EABE6" alt="Bilibili"> </a> </p>

AnimationGPT is a project focused on generating combat style character animations based on text. This project is trained on the MotionGPT and has produced the first character animation dataset dedicated to combat styles, named CombatMotion, which comes with textual descriptions.

<video width="100%" height="auto" controls> <source src="README.assets/videoDemo.mp4" type="video/mp4"> </video>

Compare to current text-to-motion dataset

DatasetMotionsTextsStyleSource
KIT-ML3,9116,278Daily LifeMotion Capture
HumanML3D14,61644,970Daily LifeMotion Capture
Motion-X81,08481,084Daily LifeVideo Reconstruction
CMP8,70026,100CombatGame
CMR14,88314,883CombatGame

Compared to the current text-to-motion datasets, CombatMotion has the following characteristics:

  1. Derived from game assets.
  2. Features a fighting style, where the animation style in action games tends to be concentrated, and the types of actions are biased.
  3. More detailed textual annotations.

Combat Motion Dataset

Pipline

  1. Obtain game assets in FBX format, redirect them to SMPL, and read the coordinates of human body joints (refer to Fbx2SMPL);

  2. Add textual annotations. For each animation, manually annotate it from the following aspects: action type, weapon type, attack type, locational words, power descriptor words, speed descriptor words, and confusion descriptor words. A partial list of terms is shown below:

    Action typeWeapon typeAttack typeLocative wordsPowerSpeedFuzzy
    IdleBare HandLeft-HandedIn-PlaceLight-WeightedSwiftPiercing
    Get HitSacred SealRight-HandedTowards LeftSteadyRelative FastSlash
    DeathFistOne-HandedTowards RightHeavy-WeightedUniform SpeedBlunt

    Then, use GPT-4 to combine these annotations into sentences.

    exampleannotation

    The diagram above outlines our annotation process. Initially, we fill in seven key descriptive words based on the characteristics of the animation, followed by writing posture description sentences. Subsequently, we use a large language model to integrate these elements into several complete natural language sentences. Finally, we select the sentence that best meets our requirements as the annotation result.

  3. Process the animation and annotated data into a format compatible with HumanML3D.

CombatMotionProcessed Dataset(CMP)

Download: google drive

CombatMotionProcessed(CMP) is a refined dataset that, in terms of character animation, retains 8,700 high-quality animations with a strong fighting style. In terms of textual annotations, we provide three text annotations for each animation: a concise description, a concise description with sensory details, and a detailed description.

Taking CMP008388 as an example, its corresponding text annotations are:

weapon attack a man holding a Katana,executing a Charged Heavy Attack,Dual Wielding,root motion get Forward, Steady,Powerful and Relative Slow,First slow then fast,Cleanly.
weapon attack a man holding a Katana,executing a Charged Heavy Attack,Dual Wielding,root motion get Forward, Steady,Powerful and Relative Slow,First slow then fast,Cleanly,which make a sense of Piercing,Wide Open,Charged,Accumulating strength.
The character grips the wedge with both hands and charges for a powerful strike. They firmly lower their body, twist to the left, lunge forward with a bow step, and stab with the sword held in both hands.

CombatMotionRaw Dataset(CMR)

Download: google drive

CombatMotionRaw (CMR) is an unrefined dataset containing 14,883 animation entries (CMP is a subset of CMR), but each animation is only provided with one textual annotation. Moreover, the textual annotations in CMR consist of simple concatenations of annotated words. It was found during project development that models trained with this type of annotation performed poorly, thus this format was ultimately not adopted.

Example of textual annotation:

weapon attack curved sword curved greatsword right-handed one-handed charged heavy attack forward steady powerful charged accumulating strength cleanly first slow then fast slash smooth and coherent wide open featherlike roundabout lean over and twist your waist to the left step forward with your right leg store your right hand from the left back swing it diagonally downward and swing two circles.

CMR has a richer set of animation data, unfortunately, the annotations are not detailed enough. You can read the textual annotations from the dataset yourself and refine them.

Model and Evaluation

Here are models trained on the CMP dataset using different algorithms:

Evaluation on CMP

MetricMotionGPTMLDMDM
Matching Score↓5.426 ± 0.0175.753 ± 0.0197.220 ± 0.018
Matching Score (Ground Truth)↓5.166 ± 0.0125.177 ± 0.0185.179 ± 0.013
R_precision (top 1)↑0.044 ± 0.0020.048 ± 0.0020.030 ± 0.001
R_precision (top 2)↑0.084 ± 0.0030.089 ± 0.0030.063 ± 0.002
R_precision (top 3)↑0.122 ± 0.0030.126 ± 0.0030.096 ± 0.002
R_precision (top 1)(Ground Truth)↑0.050 ± 0.0020.051 ± 0.0020.053 ± 0.002
R_precision (top 2)(Ground Truth)↑0.094 ± 0.0020.095 ± 0.0030.097 ± 0.003
R_precision (top 3)(Ground Truth)↑0.133 ± 0.0030.134 ± 0.0040.136 ± 0.004
FID↓0.531 ± 0.0181.240 ± 0.03640.395 ± 0.424
Diversity→5.143 ± 0.0525.269 ± 0.0443.364 ± 0.080
Diversity (Ground Truth)→5.188 ± 0.0705.200 ± 0.0495.191 ± 0.036
MultiModality ↑1.793 ± 0.0942.618 ± 0.1152.463 ± 0.102

Tutorial

  • If you need to train a model, please download the CMP dataset. Then, follow the tutorials for MotionGPT or other text-to-motion algorithms to set up the environment and train your model.

  • If you only need to use the AGPT model trained on the CMP dataset, please follow these steps:

    1. Set up the environment

      Our experimental environment is Ubuntu 22.04, NVIDIA GeForce RTX 4090, and CUDA 11.8

      git clone https://github.com/OpenMotionLab/MotionGPT.git
      cd MotionGPT
      conda create python=3.10 --name mgpt
      conda activate mgpt
      pip install -r requirements.txt
      python -m spacy download en_core_web_sm
      mkdir deps
      cd deps
      bash prepare/prepare_t5.sh
      bash prepare/download_t2m_evaluators.sh
      
    2. Download the CMP dataset

      Unzip the dataset into the datasets/humanml3d directory.

      .
      └── humanml3d
          ├── new_joint_vecs
          ├── new_joints
          └── texts
      
    3. Generate animations using the model

      • git clone https://github.com/fyyakaxyy/AnimationGPT.git

      • Copy the tools folder and config_AGPT.yaml into the MotionGPT directory

      • Download the AGPT model, place it in the MotionGPT directory

      • Save the prompt in input.txt

      • Run python demo.py --cfg ./config_AGPT.yaml --example ./input.txt

      The generated result is id_out.npy, stored in results/mgpt/debug--AGPT/

    4. File format conversion

      • Convert the generated npy files to mp4 files: modify the file path in tools/animation.py, then run: python animation.py
      • Convert the generated npy files to bvh files: modify the file path in tools/npy2bvh/joints2bvh.py, then run: python joints2bvh.py Note: The code for npy2bvh is sourced from Momask

Windows10 Tutorial

Use the AGPT model trained on the CMP dataset under Windows10:

  • When configuring the environment for MotionGPT (step 1), some packages may still be missing after using python=3.10.6 and installing requirements.txt, just follow the instructions to install them manually.

  • Windows file path separator and linux are different, some path errors need to be changed to the Win system separator, such as the separator '/' change to os.sep in the config.py

  • Convert the generated npy files to mp4 files under python=3.10 environment may report errors. The matplotlib library requires version 3.3.3, but the minimum supported library version of cp310 is 3.5.0. If you use a library version higher than 3.5.0, you will encounter the following error:

    ax.lines = [] AttributeError: can't set attribute

    ax.collections = [] AttributeError: can't set attribute

    ani.save "ValueError: unknown file extension: .mp4.

If you encounter only the first two errors when executing with matplotlib>=3.5.0, you can refer to this issue https://github.com/GuyTevet/motion-diffusion-model/issues/6.

If you are also experiencing unrecognized mp4 files, you need to additionally download ffmpeg, unzip it and modify these contents in tools/animation.py:

import matplotlib.pyplot as plt plt.rcParams['animation.ffmpeg_path'] = r'D:\\ffmpeg\\bin\\ffmpeg.exe' #ffmpeg floder from mpl_toolkits.mplot3d import Axes3D

If you have successfully generated a video file after resolving the error, but the video only has a white screen, please try switching to another python version to do the npy file format conversion. tools/requirements.txt provides the necessary dependencies for python=3.9.19 to work properly.

  • The following problems may be encountered when converting the generated npy files to bvh files

    1. Some packages are missing or numpy is reporting errors. Prioritize using python=3.9.19 and install the dependencies in tools/requirements.txt.

    2. tools/npy2bvh/joints2bvh.py is missing some package imports. Add this code:

      import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d.art3d import Poly3DCollection import mpl_toolkits.mplot3d.axes3d as p3
    3. No such file or directory: './visualization/data/template.bvh'. Modify the following path to use the commented out version:

      self.template = BVH.load('./visualization/data/template.bvh', need_quater=True) #self.template = BVH.load(os.path.dirname(__file__) + '\\visualization\\data\\template.bvh', need_quater=True)
    4. index 1 is out of bounds for axis 1 with size 1. Make sure there is no _in.npy file in the path of the file you want to convert, just keep _out.npy to solve the problem.

Suggestions

During the process of dataset creation and model training/tuning, you might encounter some issues in aspects like textual annotations, model training, and data augmentation. Based on our experience, we offer the following suggestions:

Model Training Crashes Due to Errors in Textual Annotations

If you process data using the HumanML3D pipeline, you might encounter the following issues, which can lead to model training crashes:

  • The textual description contains Chinese characters or Chinese punctuation.
  • Some words fail to be successfully annotated with part-of-speech tags.
  • Certain mathematical symbols, such as the degree symbol "°", are recognized as abnormal characters.

Exploration of Textual Annotations

  • Adding descriptions of root motion direction in the annotated text can help the model learn directional words.
  • Adding frame number information to the annotated text does not enable the model to learn how to control the duration (or number of frames) of generation.
  • The more detailed the textual annotations and the greater the number of different annotations for the same animation, the better the performance of the model.

Mixed Training

Mixing the HumanML3D, KIT-ML, and CMP datasets for model training can result in significant improvements in evaluation metrics.

编辑推荐精选

Trae

Trae

字节跳动发布的AI编程神器IDE

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多