印尼语句子相似度计算与嵌入的优化解决方案
indo-sentence-bert-base提供印尼语的文本相似度计算和语义搜索功能,通过高维向量实现精准句子比较,适用于集群分析和语义检索,支持HuggingFace和Sentence-Transformers库,具备高效的训练和评估机制。
indo-sentence-bert-base是一个基于sentence-transformers的模型,可以将句子和段落映射到768维的密集向量空间。这些向量可以用于许多任务,如聚类或语义搜索。这个模型的优势在于能够高效地对来自印尼语的句子进行编码,便于在各种NLP应用中使用。
indo-sentence-bert-base的主要功能是将印尼语句子转换为可用于计算机理解的向量表示。这些向量可以用于多种自然语言处理任务,例如:
要使用indo-sentence-bert-base模型,首先需要安装sentence-transformers库:
pip install -U sentence-transformers
然后,可以通过以下Python代码来编码句子:
from sentence_transformers import SentenceTransformer sentences = ["Ibukota Perancis adalah Paris", "Menara Eifel terletak di Paris, Perancis", "Pizza adalah makanan khas Italia", "Saya kuliah di Carneige Mellon University"] model = SentenceTransformer('firqaaa/indo-sentence-bert-base') embeddings = model.encode(sentences) print(embeddings)
如果不使用sentence-transformers,可以通过HuggingFace的Transformers库来实现类似功能。具体步骤包括:
示例代码如下:
from transformers import AutoTokenizer, AutoModel import torch def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) sentences = ["Ibukota Perancis adalah Paris", "Menara Eifel terletak di Paris, Perancis", "Pizza adalah makanan khas Italia", "Saya kuliah di Carneige Mellon University"] tokenizer = AutoTokenizer.from_pretrained('firqaaa/indo-sentence-bert-base') model = AutoModel.from_pretrained('firqaaa/indo-sentence-bert-base') encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings)
indo-sentence-bert-base模型的自动评估结果可以在Sentence Embeddings Benchmark中查看,该平台提供了多个指标来验证模型性能。
该模型通过以下参数进行训练:
NoDuplicatesDataLoader
,批量大小为16,数据长度为19644。MultipleNegativesRankingLoss
,参数包括缩放比例20.0和余弦相似度函数。完整的模型架构包含一个BertTransformer和Pooling层:
SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) )
如果引用此模型或研究,请参考以下资料:
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
高分辨率纹理 3D 资产生成
Hunyuan3D-2 是腾讯开发的用于 3D 资产生成的强大工具,支持从文本描述、单张图片或多视角图片生成 3D 模型,具备快速形状生成能力,可生成带纹理的高质量 3D 模型,适用于多个领域,为 3D 创作提供了高效解决方案。
一个具备存储、管理和客户端操作等多种功能的分布式文件系统相关项目。
3FS 是一个功能强大的分布式文件系统项目,涵盖了存储引擎、元数据管理、客户端工具等多个模块。它支持多种文件操作,如创建文件和目录、设置布局等,同时具备高效的事件循环、节点选择和协程池管理等特性。适用于需要大规模数据存储和管理的场景,能够提高系统的性能和可靠性,是分布式存储领域的优质解决方案。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号