financial-machine-learning

financial-machine-learning

金融机器学习资源汇总与实践指南

这个项目收集了金融机器学习(FinML)领域的精选工具和应用。主要包括Python资源,涵盖深度学习、强化学习和股票预测模型等。此外还提供交易微服务系统和量化机器学习交易等实用内容。项目为金融科技领域的机器学习应用提供了全面的学习和参考资料。

金融机器学习算法交易深度学习强化学习量化交易Github开源项目

Repo-Updater Wiki-Generator Repo-Search Gitter

Future of the Community

Two things:

  1. We have decided to start a Slack group (invite) & a website ML-Quant see a screenshot of the website below. https://www.ml-quant.com/

image

Financial Machine Learning and Data Science

A curated list of practical financial machine learning (FinML) tools and applications. This collection is primarily in Python.

A listed repository should be deprecated if:

  • Repository's owner explicitly say that "this library is not maintained".
  • Not committed for long time (2~3 years).

This repo is officially under revamp as of 3/29/2021!!

  • TODOs and roadmap is under the github project here
  • If you would like to contribute to this repo, please send us a pull request or contact @dereknow or @bin-yang-algotune
  • Join us in the gitter chat here

  • All repos/links status including last commit date is updated daily
  • Only 15 Highest ranked repos/links for each section are displayed on main README.md and full list is available within the wiki page
  • Both Wikis/README.md is updated in realtime as soon as new information are pushed to the repo

Trading

Deep Learning & Reinforcement Learning (Wiki)

<!-- [PLACEHOLDER_START:deep_learning_and_reinforcement_learning] -->
<sub>repo</sub><sub>comment</sub><sub>created_at</sub><sub>last_commit</sub><sub>star_count</sub><sub>repo_status</sub><sub>rating</sub>
<sub>Stock-Prediction-Models</sub><sub>very good curated list of notebooks showing deep learning + reinforcement learning models. Also contain topics on outlier detections/overbought oversold study/monte carlo simulartions/sentiment analysis from text (text storage/parsing is not detailed but it mentioned using BERT)</sub><sub>2017-12-18 10:49:59</sub><sub>2021-01-05 10:31:50</sub><sub>4635.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x5</sub>
<sub>AI Trading</sub><sub>AI to predict stock market movements.</sub><sub>2019-01-09 08:02:47</sub><sub>2019-02-11 16:32:47</sub><sub>3200.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x5</sub>
<sub>FinRL-Library</sub><sub>started by Columbia university engineering students and designed as an end to end deep reinforcement learning library for automated trading platform. Implementation of DQN DDQN DDPG etc using PyTorch and gym use pyfolio for showing backtesting stats. Big contributions on Proximal Policy Optimization (PPO) advantage actor critic (A2C) and Deep Deterministic Policy Gradient (DDPG) agents for trading</sub><sub>2020-07-26 13:18:16</sub><sub>2021-12-11 08:01:50</sub><sub>2982.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x5</sub>
<sub>Deep Learning IV</sub><sub>Bulbea: Deep Learning based Python Library.</sub><sub>2017-03-09 06:11:06</sub><sub>2017-03-19 07:42:49</sub><sub>1582.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x5</sub>
<sub>RLTrader</sub><sub>predecessor to tensortrade uses open api gym and neat way to render matplotlib plots in real time. Also explains LSTM/data stationarity/Bayesian optimization using Optuna etc.</sub><sub>2019-04-27 18:35:15</sub><sub>2019-10-17 16:25:49</sub><sub>1463.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x5</sub>
<sub>Deep Learning III</sub><sub>Algorithmic trading with deep learning experiments.</sub><sub>2016-06-18 18:23:06</sub><sub>2018-08-07 15:24:45</sub><sub>1307.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x5</sub>
<sub>Personae</sub><sub>implementation of deep reinforcement learning and supervised learnings covering areas: deep deterministic policy gradient (DDPG) and DDQN etc. Data are being pulled from rqalpha which is a python backtest engine and have a nice docker image to run training/testing</sub><sub>2018-03-10 11:22:00</sub><sub>2018-09-02 17:21:38</sub><sub>1179.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x5</sub>
<sub>RL Trading</sub><sub>A collection of 25+ Reinforcement Learning Trading Strategies -Google Colab.</sub><sub>nan</sub><sub>nan</sub><sub>nan</sub><sub>:heavy_check_mark:</sub><sub>:star:x4</sub>
<sub>Deep-Reinforcement-Learning-for-Automated-Stock-Trading-Ensemble-Strategy-ICAIF-2020</sub><sub>Part of FinRL and provided code for paper deep reinformacement learning for automated stock trading focuses on ensemble.</sub><sub>2020-07-26 13:12:53</sub><sub>2021-01-21 18:11:59</sub><sub>928.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x4</sub>
<sub>awesome-deep-trading</sub><sub>curated list of papers/repos on topics like CNN/LSTM/GAN/Reinforcement Learning etc. Categorized as deep learning for now but there are other topics here. Manually maintained by cbailes</sub><sub>2018-11-26 03:23:04</sub><sub>2021-01-01 09:41:21</sub><sub>781.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x4</sub>
<sub>Neural Network</sub><sub>Neural networks to predict stock prices.</sub><sub>2018-09-10 06:34:53</sub><sub>2018-11-21 07:39:31</sub><sub>562.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x4</sub>
<sub>Deep Learning</sub><sub>Technical experimentations to beat the stock market using deep learning.</sub><sub>2016-12-12 02:15:12</sub><sub>2017-03-04 08:37:29</sub><sub>439.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x4</sub>
<sub>LTSM Recurrent</sub><sub>OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network.</sub><sub>2018-10-07 03:58:26</sub><sub>2019-08-03 09:00:44</sub><sub>1336.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x4</sub>
<sub>RL III</sub><sub>Github -Deep Reinforcement Learning based Trading Agent for Bitcoin.</sub><sub>2017-09-21 17:05:19</sub><sub>2018-04-13 16:33:21</sub><sub>627.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x3</sub>
<sub>crypto-rl</sub><sub>Retrieve limit order book level data from coinbase pro and bitfinex -> record in arctic timeseries database then implemented trend following strategies (market orders) and market making (limit orders). Uses reinforcement learning (DQN) keras-rl to create agents and uses openai gym to implement POMDP (partially observable markov decision process)</sub><sub>2018-06-21 01:06:01</sub><sub>2021-11-30 13:52:18</sub><sub>475.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x3</sub>

Other Models (Wiki)

<!-- [PLACEHOLDER_START:other_models] -->
<sub>repo</sub><sub>comment</sub><sub>created_at</sub><sub>last_commit</sub><sub>star_count</sub><sub>repo_status</sub><sub>rating</sub>
<sub>Hands-On-Machine-Learning-for-Algorithmic-Trading</sub><sub>repo for book hands-on-machine learning for algorithmic trading covering topic from data/unsupervised learning/NPL/RNN & CNN/reinforcement learning etc. Leverage zipline/alphalens/sklearn/openai-gym etc as well. Good references to have</sub><sub>2019-05-07 11:04:25</sub><sub>2021-01-19 07:51:00</sub><sub>760.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x5</sub>
<sub>Microservices-Based-Algorithmic-Trading-System</sub><sub>docker based platfrom for developing algo trading strategies. Very interesting combinations of open source components were used including backtrader for backtest strategies / mlflow for managing the machine learning model life cycle (i.e. training and developing machine learning models) / airflow used as workflow management including schedule data download etc. / superset web data visualization tool similar to tableau / minio for fast object storage (i.e. storing saved models and model artifacts) / postgresql used to store security master and daily and minute data. Also contains some details on deployment on cloud</sub><sub>2020-01-06 00:21:58</sub><sub>2021-05-29 18:07:29</sub><sub>180.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x5</sub>
<sub>Awesome-Quant-Machine-Learning-Trading</sub><sub>curated list of books/online courses/youtube videos/blogs/interviews/papers/code etc. Updates are pretty infrequent</sub><sub>2018-11-05 21:09:06</sub><sub>2020-10-08 16:48:18</sub><sub>1278.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x5</sub>
<sub>AlphaPy</sub><sub>machine learning framework built on sklearn and pandas. Support pyfolio/xgboost/lightgmb/catboost(gradient boosting on decision tress) etc. Examples include financial market prediction/sports prediction/kaggle. Configurations are set though yaml file for all model process including feature selection/grid search on parameters and aggregate results for each model</sub><sub>2016-02-14 00:47:32</sub><sub>2021-10-23 07:17:16</sub><sub>672.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x4</sub>

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多