A curated list of practical financial machine learning (FinML) tools and applications. This collection is primarily in Python.
A listed repository should be deprecated if:
This repo is officially under revamp as of 3/29/2021!!
<sub>repo</sub> | <sub>comment</sub> | <sub>created_at</sub> | <sub>last_commit</sub> | <sub>star_count</sub> | <sub>repo_status</sub> | <sub>rating</sub> |
---|---|---|---|---|---|---|
<sub>Stock-Prediction-Models</sub> | <sub>very good curated list of notebooks showing deep learning + reinforcement learning models. Also contain topics on outlier detections/overbought oversold study/monte carlo simulartions/sentiment analysis from text (text storage/parsing is not detailed but it mentioned using BERT)</sub> | <sub>2017-12-18 10:49:59</sub> | <sub>2021-01-05 10:31:50</sub> | <sub>4635.0</sub> | <sub>:heavy_check_mark:</sub> | <sub>:star:x5</sub> |
<sub>AI Trading</sub> | <sub>AI to predict stock market movements.</sub> | <sub>2019-01-09 08:02:47</sub> | <sub>2019-02-11 16:32:47</sub> | <sub>3200.0</sub> | <sub>:heavy_multiplication_x:</sub> | <sub>:star:x5</sub> |
<sub>FinRL-Library</sub> | <sub>started by Columbia university engineering students and designed as an end to end deep reinforcement learning library for automated trading platform. Implementation of DQN DDQN DDPG etc using PyTorch and gym use pyfolio for showing backtesting stats. Big contributions on Proximal Policy Optimization (PPO) advantage actor critic (A2C) and Deep Deterministic Policy Gradient (DDPG) agents for trading</sub> | <sub>2020-07-26 13:18:16</sub> | <sub>2021-12-11 08:01:50</sub> | <sub>2982.0</sub> | <sub>:heavy_check_mark:</sub> | <sub>:star:x5</sub> |
<sub>Deep Learning IV</sub> | <sub>Bulbea: Deep Learning based Python Library.</sub> | <sub>2017-03-09 06:11:06</sub> | <sub>2017-03-19 07:42:49</sub> | <sub>1582.0</sub> | <sub>:heavy_multiplication_x:</sub> | <sub>:star:x5</sub> |
<sub>RLTrader</sub> | <sub>predecessor to tensortrade uses open api gym and neat way to render matplotlib plots in real time. Also explains LSTM/data stationarity/Bayesian optimization using Optuna etc.</sub> | <sub>2019-04-27 18:35:15</sub> | <sub>2019-10-17 16:25:49</sub> | <sub>1463.0</sub> | <sub>:heavy_multiplication_x:</sub> | <sub>:star:x5</sub> |
<sub>Deep Learning III</sub> | <sub>Algorithmic trading with deep learning experiments.</sub> | <sub>2016-06-18 18:23:06</sub> | <sub>2018-08-07 15:24:45</sub> | <sub>1307.0</sub> | <sub>:heavy_multiplication_x:</sub> | <sub>:star:x5</sub> |
<sub>Personae</sub> | <sub>implementation of deep reinforcement learning and supervised learnings covering areas: deep deterministic policy gradient (DDPG) and DDQN etc. Data are being pulled from rqalpha which is a python backtest engine and have a nice docker image to run training/testing</sub> | <sub>2018-03-10 11:22:00</sub> | <sub>2018-09-02 17:21:38</sub> | <sub>1179.0</sub> | <sub>:heavy_multiplication_x:</sub> | <sub>:star:x5</sub> |
<sub>RL Trading</sub> | <sub>A collection of 25+ Reinforcement Learning Trading Strategies -Google Colab.</sub> | <sub>nan</sub> | <sub>nan</sub> | <sub>nan</sub> | <sub>:heavy_check_mark:</sub> | <sub>:star:x4</sub> |
<sub>Deep-Reinforcement-Learning-for-Automated-Stock-Trading-Ensemble-Strategy-ICAIF-2020</sub> | <sub>Part of FinRL and provided code for paper deep reinformacement learning for automated stock trading focuses on ensemble.</sub> | <sub>2020-07-26 13:12:53</sub> | <sub>2021-01-21 18:11:59</sub> | <sub>928.0</sub> | <sub>:heavy_check_mark:</sub> | <sub>:star:x4</sub> |
<sub>awesome-deep-trading</sub> | <sub>curated list of papers/repos on topics like CNN/LSTM/GAN/Reinforcement Learning etc. Categorized as deep learning for now but there are other topics here. Manually maintained by cbailes</sub> | <sub>2018-11-26 03:23:04</sub> | <sub>2021-01-01 09:41:21</sub> | <sub>781.0</sub> | <sub>:heavy_check_mark:</sub> | <sub>:star:x4</sub> |
<sub>Neural Network</sub> | <sub>Neural networks to predict stock prices.</sub> | <sub>2018-09-10 06:34:53</sub> | <sub>2018-11-21 07:39:31</sub> | <sub>562.0</sub> | <sub>:heavy_multiplication_x:</sub> | <sub>:star:x4</sub> |
<sub>Deep Learning</sub> | <sub>Technical experimentations to beat the stock market using deep learning.</sub> | <sub>2016-12-12 02:15:12</sub> | <sub>2017-03-04 08:37:29</sub> | <sub>439.0</sub> | <sub>:heavy_multiplication_x:</sub> | <sub>:star:x4</sub> |
<sub>LTSM Recurrent</sub> | <sub>OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network.</sub> | <sub>2018-10-07 03:58:26</sub> | <sub>2019-08-03 09:00:44</sub> | <sub>1336.0</sub> | <sub>:heavy_multiplication_x:</sub> | <sub>:star:x4</sub> |
<sub>RL III</sub> | <sub>Github -Deep Reinforcement Learning based Trading Agent for Bitcoin.</sub> | <sub>2017-09-21 17:05:19</sub> | <sub>2018-04-13 16:33:21</sub> | <sub>627.0</sub> | <sub>:heavy_multiplication_x:</sub> | <sub>:star:x3</sub> |
<sub>crypto-rl</sub> | <sub>Retrieve limit order book level data from coinbase pro and bitfinex -> record in arctic timeseries database then implemented trend following strategies (market orders) and market making (limit orders). Uses reinforcement learning (DQN) keras-rl to create agents and uses openai gym to implement POMDP (partially observable markov decision process)</sub> | <sub>2018-06-21 01:06:01</sub> | <sub>2021-11-30 13:52:18</sub> | <sub>475.0</sub> | <sub>:heavy_check_mark:</sub> | <sub>:star:x3</sub> |
<sub>repo</sub> | <sub>comment</sub> | <sub>created_at</sub> | <sub>last_commit</sub> | <sub>star_count</sub> | <sub>repo_status</sub> | <sub>rating</sub> |
---|---|---|---|---|---|---|
<sub>Hands-On-Machine-Learning-for-Algorithmic-Trading</sub> | <sub>repo for book hands-on-machine learning for algorithmic trading covering topic from data/unsupervised learning/NPL/RNN & CNN/reinforcement learning etc. Leverage zipline/alphalens/sklearn/openai-gym etc as well. Good references to have</sub> | <sub>2019-05-07 11:04:25</sub> | <sub>2021-01-19 07:51:00</sub> | <sub>760.0</sub> | <sub>:heavy_check_mark:</sub> | <sub>:star:x5</sub> |
<sub>Microservices-Based-Algorithmic-Trading-System</sub> | <sub>docker based platfrom for developing algo trading strategies. Very interesting combinations of open source components were used including backtrader for backtest strategies / mlflow for managing the machine learning model life cycle (i.e. training and developing machine learning models) / airflow used as workflow management including schedule data download etc. / superset web data visualization tool similar to tableau / minio for fast object storage (i.e. storing saved models and model artifacts) / postgresql used to store security master and daily and minute data. Also contains some details on deployment on cloud</sub> | <sub>2020-01-06 00:21:58</sub> | <sub>2021-05-29 18:07:29</sub> | <sub>180.0</sub> | <sub>:heavy_check_mark:</sub> | <sub>:star:x5</sub> |
<sub>Awesome-Quant-Machine-Learning-Trading</sub> | <sub>curated list of books/online courses/youtube videos/blogs/interviews/papers/code etc. Updates are pretty infrequent</sub> | <sub>2018-11-05 21:09:06</sub> | <sub>2020-10-08 16:48:18</sub> | <sub>1278.0</sub> | <sub>:heavy_check_mark:</sub> | <sub>:star:x5</sub> |
<sub>AlphaPy</sub> | <sub>machine learning framework built on sklearn and pandas. Support pyfolio/xgboost/lightgmb/catboost(gradient boosting on decision tress) etc. Examples include financial market prediction/sports prediction/kaggle. Configurations are set though yaml file for all model process including feature selection/grid search on parameters and aggregate results for each model</sub> | <sub>2016-02-14 00:47:32</sub> | <sub>2021-10-23 07:17:16</sub> | <sub>672.0</sub> | <sub>:heavy_check_mark:</sub> | <sub>:star:x4</sub> |
最强AI数据分析助手
小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。
像人一样思考的AI智能体
imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确 地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商 务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号