financial-machine-learning

financial-machine-learning

金融机器学习资源汇总与实践指南

这个项目收集了金融机器学习(FinML)领域的精选工具和应用。主要包括Python资源,涵盖深度学习、强化学习和股票预测模型等。此外还提供交易微服务系统和量化机器学习交易等实用内容。项目为金融科技领域的机器学习应用提供了全面的学习和参考资料。

金融机器学习算法交易深度学习强化学习量化交易Github开源项目

Repo-Updater Wiki-Generator Repo-Search Gitter

Future of the Community

Two things:

  1. We have decided to start a Slack group (invite) & a website ML-Quant see a screenshot of the website below. https://www.ml-quant.com/

image

Financial Machine Learning and Data Science

A curated list of practical financial machine learning (FinML) tools and applications. This collection is primarily in Python.

A listed repository should be deprecated if:

  • Repository's owner explicitly say that "this library is not maintained".
  • Not committed for long time (2~3 years).

This repo is officially under revamp as of 3/29/2021!!

  • TODOs and roadmap is under the github project here
  • If you would like to contribute to this repo, please send us a pull request or contact @dereknow or @bin-yang-algotune
  • Join us in the gitter chat here

  • All repos/links status including last commit date is updated daily
  • Only 15 Highest ranked repos/links for each section are displayed on main README.md and full list is available within the wiki page
  • Both Wikis/README.md is updated in realtime as soon as new information are pushed to the repo

Trading

Deep Learning & Reinforcement Learning (Wiki)

<!-- [PLACEHOLDER_START:deep_learning_and_reinforcement_learning] -->
<sub>repo</sub><sub>comment</sub><sub>created_at</sub><sub>last_commit</sub><sub>star_count</sub><sub>repo_status</sub><sub>rating</sub>
<sub>Stock-Prediction-Models</sub><sub>very good curated list of notebooks showing deep learning + reinforcement learning models. Also contain topics on outlier detections/overbought oversold study/monte carlo simulartions/sentiment analysis from text (text storage/parsing is not detailed but it mentioned using BERT)</sub><sub>2017-12-18 10:49:59</sub><sub>2021-01-05 10:31:50</sub><sub>4635.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x5</sub>
<sub>AI Trading</sub><sub>AI to predict stock market movements.</sub><sub>2019-01-09 08:02:47</sub><sub>2019-02-11 16:32:47</sub><sub>3200.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x5</sub>
<sub>FinRL-Library</sub><sub>started by Columbia university engineering students and designed as an end to end deep reinforcement learning library for automated trading platform. Implementation of DQN DDQN DDPG etc using PyTorch and gym use pyfolio for showing backtesting stats. Big contributions on Proximal Policy Optimization (PPO) advantage actor critic (A2C) and Deep Deterministic Policy Gradient (DDPG) agents for trading</sub><sub>2020-07-26 13:18:16</sub><sub>2021-12-11 08:01:50</sub><sub>2982.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x5</sub>
<sub>Deep Learning IV</sub><sub>Bulbea: Deep Learning based Python Library.</sub><sub>2017-03-09 06:11:06</sub><sub>2017-03-19 07:42:49</sub><sub>1582.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x5</sub>
<sub>RLTrader</sub><sub>predecessor to tensortrade uses open api gym and neat way to render matplotlib plots in real time. Also explains LSTM/data stationarity/Bayesian optimization using Optuna etc.</sub><sub>2019-04-27 18:35:15</sub><sub>2019-10-17 16:25:49</sub><sub>1463.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x5</sub>
<sub>Deep Learning III</sub><sub>Algorithmic trading with deep learning experiments.</sub><sub>2016-06-18 18:23:06</sub><sub>2018-08-07 15:24:45</sub><sub>1307.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x5</sub>
<sub>Personae</sub><sub>implementation of deep reinforcement learning and supervised learnings covering areas: deep deterministic policy gradient (DDPG) and DDQN etc. Data are being pulled from rqalpha which is a python backtest engine and have a nice docker image to run training/testing</sub><sub>2018-03-10 11:22:00</sub><sub>2018-09-02 17:21:38</sub><sub>1179.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x5</sub>
<sub>RL Trading</sub><sub>A collection of 25+ Reinforcement Learning Trading Strategies -Google Colab.</sub><sub>nan</sub><sub>nan</sub><sub>nan</sub><sub>:heavy_check_mark:</sub><sub>:star:x4</sub>
<sub>Deep-Reinforcement-Learning-for-Automated-Stock-Trading-Ensemble-Strategy-ICAIF-2020</sub><sub>Part of FinRL and provided code for paper deep reinformacement learning for automated stock trading focuses on ensemble.</sub><sub>2020-07-26 13:12:53</sub><sub>2021-01-21 18:11:59</sub><sub>928.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x4</sub>
<sub>awesome-deep-trading</sub><sub>curated list of papers/repos on topics like CNN/LSTM/GAN/Reinforcement Learning etc. Categorized as deep learning for now but there are other topics here. Manually maintained by cbailes</sub><sub>2018-11-26 03:23:04</sub><sub>2021-01-01 09:41:21</sub><sub>781.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x4</sub>
<sub>Neural Network</sub><sub>Neural networks to predict stock prices.</sub><sub>2018-09-10 06:34:53</sub><sub>2018-11-21 07:39:31</sub><sub>562.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x4</sub>
<sub>Deep Learning</sub><sub>Technical experimentations to beat the stock market using deep learning.</sub><sub>2016-12-12 02:15:12</sub><sub>2017-03-04 08:37:29</sub><sub>439.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x4</sub>
<sub>LTSM Recurrent</sub><sub>OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network.</sub><sub>2018-10-07 03:58:26</sub><sub>2019-08-03 09:00:44</sub><sub>1336.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x4</sub>
<sub>RL III</sub><sub>Github -Deep Reinforcement Learning based Trading Agent for Bitcoin.</sub><sub>2017-09-21 17:05:19</sub><sub>2018-04-13 16:33:21</sub><sub>627.0</sub><sub>:heavy_multiplication_x:</sub><sub>:star:x3</sub>
<sub>crypto-rl</sub><sub>Retrieve limit order book level data from coinbase pro and bitfinex -> record in arctic timeseries database then implemented trend following strategies (market orders) and market making (limit orders). Uses reinforcement learning (DQN) keras-rl to create agents and uses openai gym to implement POMDP (partially observable markov decision process)</sub><sub>2018-06-21 01:06:01</sub><sub>2021-11-30 13:52:18</sub><sub>475.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x3</sub>

Other Models (Wiki)

<!-- [PLACEHOLDER_START:other_models] -->
<sub>repo</sub><sub>comment</sub><sub>created_at</sub><sub>last_commit</sub><sub>star_count</sub><sub>repo_status</sub><sub>rating</sub>
<sub>Hands-On-Machine-Learning-for-Algorithmic-Trading</sub><sub>repo for book hands-on-machine learning for algorithmic trading covering topic from data/unsupervised learning/NPL/RNN & CNN/reinforcement learning etc. Leverage zipline/alphalens/sklearn/openai-gym etc as well. Good references to have</sub><sub>2019-05-07 11:04:25</sub><sub>2021-01-19 07:51:00</sub><sub>760.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x5</sub>
<sub>Microservices-Based-Algorithmic-Trading-System</sub><sub>docker based platfrom for developing algo trading strategies. Very interesting combinations of open source components were used including backtrader for backtest strategies / mlflow for managing the machine learning model life cycle (i.e. training and developing machine learning models) / airflow used as workflow management including schedule data download etc. / superset web data visualization tool similar to tableau / minio for fast object storage (i.e. storing saved models and model artifacts) / postgresql used to store security master and daily and minute data. Also contains some details on deployment on cloud</sub><sub>2020-01-06 00:21:58</sub><sub>2021-05-29 18:07:29</sub><sub>180.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x5</sub>
<sub>Awesome-Quant-Machine-Learning-Trading</sub><sub>curated list of books/online courses/youtube videos/blogs/interviews/papers/code etc. Updates are pretty infrequent</sub><sub>2018-11-05 21:09:06</sub><sub>2020-10-08 16:48:18</sub><sub>1278.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x5</sub>
<sub>AlphaPy</sub><sub>machine learning framework built on sklearn and pandas. Support pyfolio/xgboost/lightgmb/catboost(gradient boosting on decision tress) etc. Examples include financial market prediction/sports prediction/kaggle. Configurations are set though yaml file for all model process including feature selection/grid search on parameters and aggregate results for each model</sub><sub>2016-02-14 00:47:32</sub><sub>2021-10-23 07:17:16</sub><sub>672.0</sub><sub>:heavy_check_mark:</sub><sub>:star:x4</sub>

编辑推荐精选

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

下拉加载更多