
基于ImageNet-22K数据集的ConvNeXt V2全卷积模型
ConvNeXt V2模型通过FCMAE框架和新引入的GRN层提高卷积网络在图像分类中的效果,基于ImageNet-22K数据 集训练,支持高分辨率和出色性能表现,适用于多种识别任务,可用于直接应用或微调以满足特定需求。
ConvNeXt V2是一个基于卷积神经网络(ConvNet)的模型,它在图像分类领域具有显著的性能提升。此模型由Woo等人在论文“ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders”中提出,并首次在Facebook研究部门的开源库中发布。该模型经过FCMAE框架预训练,并在ImageNet-22K数据集上以384x384的分辨率进行微调。
ConvNeXt V2模型是一个全卷积模型,引入了全卷积遮盖自动编码器框架(FCMAE)和新的全局响应归一化(GRN)层,以增强传统ConvNet的能力。通过这些创新,ConvNeXt V2模型在多种识别基准测试中的表现有了显著改善。

ConvNeXt V2模型主要用于图像分类任务。用户可以使用该模型的原始版本进行图片分类操作。此外,还可以在模型集线上查找适合特定任务的微调版本。
以下是如何利用ConvNeXt V2模型将COCO 2017数据集中的图像分类为1,000个ImageNet类别之一的示例:
from transformers import AutoImageProcessor, ConvNextV2ForImageClassification import torch from datasets import load_dataset dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] preprocessor = AutoImageProcessor.from_pretrained("facebook/convnextv2-base-22k-384") model = ConvNextV2ForImageClassification.from_pretrained("facebook/convnextv2-base-22k-384") inputs = preprocessor(image, return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits # 模型预测出1,000个ImageNet类别中的一个 predicted_label = logits.argmax(-1).item() print(model.config.id2label[predicted_label])
更多代码示例可以参考详细文档。
欲引用该模型的相关工作,请参见以下BibTeX条目:
@article{DBLP:journals/corr/abs-2301-00808, author = {Sanghyun Woo and Shoubhik Debnath and Ronghang Hu and Xinlei Chen and Zhuang Liu and In So Kweon and Saining Xie}, title = {ConvNeXt {V2:} Co-designing and Scaling ConvNets with Masked Autoencoders}, journal = {CoRR}, volume = {abs/2301.00808}, year = {2023}, url = {https://doi.org/10.48550/arXiv.2301.00808}, doi = {10.48550/arXiv.2301.00808}, eprinttype = {arXiv}, eprint = {2301.00808}, timestamp = {Tue, 10 Jan 2023 15:10:12 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2301-00808.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }
ConvNeXt V2通过对传统卷积网络的创新设计,展示了其在大规模数据集上的卓越性能,为视觉识别任务提供了一个强有力的工具。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等 一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号