cymem

cymem

Cython项目的智能内存管理工具

cymem为Cython项目提供了两个简洁的内存管理助手,实现了内存与Python对象生命周期的智能绑定。其核心Pool类封装了calloc函数,适用于复杂的深度嵌套结构。通过自动内存释放机制,cymem有效防止内存泄漏,简化了开发流程,提升了Cython项目的性能和可靠性。

cymemCython内存管理PythonPoolGithub开源项目

<a href="https://explosion.ai"><img src="https://yellow-cdn.veclightyear.com/835a84d5/aaeb809f-625e-4089-9d87-7479468bfbb3.svg" width="125" height="125" align="right" /></a>

cymem: Cython内存辅助工具

cymem为Cython提供了两个小型内存管理辅助工具。它们可以轻松地将内存与Python对象的生命周期绑定,使得当对象被垃圾回收时,内存也会被释放。

测试 pypi版本 conda版本 Python轮子

概述

最有用的是cymem.Pool,它作为calloc函数的一个薄包装器:

from cymem.cymem cimport Pool cdef Pool mem = Pool() data1 = <int*>mem.alloc(10, sizeof(int)) data2 = <float*>mem.alloc(12, sizeof(float))

Pool对象在内部保存内存地址,并在对象被垃圾回收时释放它们。通常,你会将Pool附加到某个cdef'd类上。这对于具有复杂初始化函数的深度嵌套结构特别方便。只需将Pool对象传入初始化器,你就不必担心释放结构体了 —— 所有对Pool.alloc的调用都会在Pool过期时自动释放。

安装

通过pip安装,并需要Cython。在安装之前,请确保你的pipsetuptoolswheel是最新的。

pip install -U pip setuptools wheel pip install cymem

使用案例:结构体数组

假设我们需要一系列稀疏矩阵。我们需要快速访问,而Python列表的性能不够好。因此,我们想要一个C数组或C++向量,这意味着稀疏矩阵需要是C级别的结构体 —— 它不能是Python类。我们可以在Cython中轻松地编写这个:

"""不使用Cymem的示例 要使用结构体数组,我们必须在释放时仔细遍历数据结构。 """ from libc.stdlib cimport calloc, free cdef struct SparseRow: size_t length size_t* indices double* values cdef struct SparseMatrix: size_t length SparseRow* rows cdef class MatrixArray: cdef size_t length cdef SparseMatrix** matrices def __cinit__(self, list py_matrices): self.length = 0 self.matrices = NULL def __init__(self, list py_matrices): self.length = len(py_matrices) self.matrices = <SparseMatrix**>calloc(len(py_matrices), sizeof(SparseMatrix*)) for i, py_matrix in enumerate(py_matrices): self.matrices[i] = sparse_matrix_init(py_matrix) def __dealloc__(self): for i in range(self.length): sparse_matrix_free(self.matrices[i]) free(self.matrices) cdef SparseMatrix* sparse_matrix_init(list py_matrix) except NULL: sm = <SparseMatrix*>calloc(1, sizeof(SparseMatrix)) sm.length = len(py_matrix) sm.rows = <SparseRow*>calloc(sm.length, sizeof(SparseRow)) cdef size_t i, j cdef dict py_row cdef size_t idx cdef double value for i, py_row in enumerate(py_matrix): sm.rows[i].length = len(py_row) sm.rows[i].indices = <size_t*>calloc(sm.rows[i].length, sizeof(size_t)) sm.rows[i].values = <double*>calloc(sm.rows[i].length, sizeof(double)) for j, (idx, value) in enumerate(py_row.items()): sm.rows[i].indices[j] = idx sm.rows[i].values[j] = value return sm cdef void* sparse_matrix_free(SparseMatrix* sm) except *: cdef size_t i for i in range(sm.length): free(sm.rows[i].indices) free(sm.rows[i].values) free(sm.rows) free(sm)

我们将数据结构包装在一个Python引用计数类中,尽可能低级,以满足我们的性能需求。这允许我们在Cython的__cinit____dealloc__特殊方法中分配和释放内存。

然而,在编写__dealloc__sparse_matrix_free函数时很容易出错,导致内存泄漏。cymem可以让你完全避免编写这些析构函数。相反,你可以这样写:

"""使用Cymem的示例 内存分配隐藏在Pool类后面,它记住了它分配的地址。当Pool对象被垃圾回收时, 它分配的所有地址都会被释放。 我们不需要编写MatrixArray.__dealloc__或sparse_matrix_free, 从而消除了一类常见的错误。 """ from cymem.cymem cimport Pool cdef struct SparseRow: size_t length size_t* indices double* values cdef struct SparseMatrix: size_t length SparseRow* rows cdef class MatrixArray: cdef size_t length cdef SparseMatrix** matrices cdef Pool mem def __cinit__(self, list py_matrices): self.mem = None self.length = 0 self.matrices = NULL def __init__(self, list py_matrices): self.mem = Pool() self.length = len(py_matrices) self.matrices = <SparseMatrix**>self.mem.alloc(self.length, sizeof(SparseMatrix*)) for i, py_matrix in enumerate(py_matrices): self.matrices[i] = sparse_matrix_init(self.mem, py_matrix) cdef SparseMatrix* sparse_matrix_init_cymem(Pool mem, list py_matrix) except NULL: sm = <SparseMatrix*>mem.alloc(1, sizeof(SparseMatrix)) sm.length = len(py_matrix) sm.rows = <SparseRow*>mem.alloc(sm.length, sizeof(SparseRow)) cdef size_t i, j cdef dict py_row cdef size_t idx cdef double value for i, py_row in enumerate(py_matrix): sm.rows[i].length = len(py_row) sm.rows[i].indices = <size_t*>mem.alloc(sm.rows[i].length, sizeof(size_t)) sm.rows[i].values = <double*>mem.alloc(sm.rows[i].length, sizeof(double)) for j, (idx, value) in enumerate(py_row.items()): sm.rows[i].indices[j] = idx sm.rows[i].values[j] = value return sm

Pool类所做的就是记住它分配的地址。当MatrixArray对象被垃圾回收时,Pool对象也会被垃圾回收,这会触发对Pool.__dealloc__的调用。然后Pool释放它的所有地址。这使你不必回溯嵌套的数据结构来释放它们,从而消除了一类常见的错误。

自定义分配器

有时外部C库使用私有函数来分配和释放对象,但我们仍然希望使用Pool的惰性特性。

from cymem.cymem cimport Pool, WrapMalloc, WrapFree cdef Pool mem = Pool(WrapMalloc(priv_malloc), WrapFree(priv_free))

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多