SparseTransformer

SparseTransformer

PyTorch库实现可变长度稀疏Transformer用于3D点云处理

SparseTransformer (SpTr)是一个PyTorch库,专门用于实现可变长度稀疏Transformer,主要应用于3D点云数据处理。该库具有快速、内存高效和易用的特点,支持窗口Transformer等技术。SpTr已在多个计算机视觉研究中应用,包括LiDAR的球形Transformer和3D点云分割的分层Transformer。它能够轻松集成到基于Transformer的3D点云网络中,仅需少量修改即可使用。

SpTr稀疏变压器点云处理3D识别PyTorchGithub开源项目

SpTr: PyTorch空间稀疏Transformer库

<div align="center"> <img src="https://yellow-cdn.veclightyear.com/0a4dffa0/0913c0e7-0a65-4a9d-beff-d3e11d088605.png"/> </div>

SparseTransformer (SpTr) 为具有可变token数量的稀疏transformer(例如用于3D点云的窗口transformer)提供了快速内存高效易于使用的实现。

SpTr 已被以下工作采用:

安装

安装依赖

pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch_scatter==2.0.9
pip install torch_geometric==1.7.2

编译sptr

python3 setup.py install

使用

SpTr可以轻松应用于当前大多数基于transformer的3D点云网络中,只需进行几处小修改。首先,定义注意力模块sptr.VarLengthMultiheadSA。然后,将输入特征和索引包装成sptr.SparseTrTensor,并将其传入模块。就这么简单。下面是一个简单的示例。对于更复杂的用法,您可以参考上述工作的代码(例如SphereFormer、StratifiedFormer)。

示例

import sptr

# 定义模块
dim = 48
num_heads = 3
indice_key = 'sptr_0'
window_size = np.array([0.4, 0.4, 0.4])  # 对于基于体素的方法也可以是整数
shift_win = False  # 是否采用移位窗口
self.attn = sptr.VarLengthMultiheadSA(
    dim, 
    num_heads, 
    indice_key, 
    window_size, 
    shift_win
)

# 将输入特征和索引包装成SparseTrTensor。注意:索引可以是基于体素方法的整数,也可以是基于点的方法的浮点数(即xyz)
# feats: [N, C], indices: [N, 4],第0列为批次索引
input_tensor = sptr.SparseTrTensor(feats, indices, spatial_shape=None, batch_size=None)
output_tensor = self.attn(input_tensor)

# 从输出张量中提取特征
output_feats = output_tensor.query_feats

作者

Xin Lai(香港中文大学计算机科学与工程系博士生,xinlai@cse.cuhk.edu.hk) - 初始CUDA实现,维护。

Fanbin Lu(香港中文大学计算机科学与工程系博士生) - 改进CUDA实现,维护。

Yukang Chen(香港中文大学计算机科学与工程系博士生) - 维护。

引用

如果您发现本项目有用,请考虑引用

@inproceedings{lai2023spherical,
  title={Spherical Transformer for LiDAR-based 3D Recognition},
  author={Lai, Xin and Chen, Yukang and Lu, Fanbin and Liu, Jianhui and Jia, Jiaya},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2023}
}
@inproceedings{lai2022stratified,
  title={Stratified transformer for 3d point cloud segmentation},
  author={Lai, Xin and Liu, Jianhui and Jiang, Li and Wang, Liwei and Zhao, Hengshuang and Liu, Shu and Qi, Xiaojuan and Jia, Jiaya},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={8500--8509},
  year={2022}
}

许可证

本项目采用Apache License 2.0许可证。

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多