vigil-llm

vigil-llm

多层防御工具,评估和保护LLM提示安全

Vigil-llm是一款评估大型语言模型提示和响应安全性的开源工具。它集成了向量数据库、启发式规则、变压器模型等多种扫描模块,能够有效检测提示注入、越狱等潜在威胁。该工具支持本地和OpenAI嵌入,内置常见攻击签名库,可作为Python库或REST API使用,为LLM应用构建全方位的安全防护体系。

VigilLLM安全扫描提示注入APIGithub开源项目

logo

Overview 🏕️

⚡ Security scanner for LLM prompts ⚡

Vigil is a Python library and REST API for assessing Large Language Model prompts and responses against a set of scanners to detect prompt injections, jailbreaks, and other potential threats. This repository also provides the detection signatures and datasets needed to get started with self-hosting.

This application is currently in an alpha state and should be considered experimental / for research purposes.

For an enterprise-ready AI firewall, I kindly refer you to my employer, Robust Intelligence.

Highlights ✨

Background 🏗️

Prompt Injection Vulnerability occurs when an attacker manipulates a large language model (LLM) through crafted inputs, causing the LLM to unknowingly execute the attacker's intentions. This can be done directly by "jailbreaking" the system prompt or indirectly through manipulated external inputs, potentially leading to data exfiltration, social engineering, and other issues.

These issues are caused by the nature of LLMs themselves, which do not currently separate instructions and data. Although prompt injection attacks are currently unsolvable and there is no defense that will work 100% of the time, by using a layered approach of detecting known techniques you can at least defend against the more common / documented attacks.

Vigil, or a system like it, should not be your only defense - always implement proper security controls and mitigations.

[!NOTE] Keep in mind, LLMs are not yet widely adopted and integrated with other applications, therefore threat actors have less motivation to find new or novel attack vectors. Stay informed on current attacks and adjust your defenses accordingly!

Additional Resources

For more information on prompt injection, I recommend the following resources and following the research being performed by people like Kai Greshake, Simon Willison, and others.

Install Vigil 🛠️

Follow the steps below to install Vigil

A Docker container is also available, but this is not currently recommended.

Clone Repository

Clone the repository or grab the latest release

git clone https://github.com/deadbits/vigil-llm.git
cd vigil-llm

Install YARA

Follow the instructions on the YARA Getting Started documentation to download and install YARA v4.3.2.

Setup Virtual Environment

python3 -m venv venv
source venv/bin/activate

Install Vigil library

Inside your virutal environment, install the application:

pip install -e .

Configure Vigil

Open the conf/server.conf file in your favorite text editor:

vim conf/server.conf

For more information on modifying the server.conf file, please review the Configuration documentation.

[!IMPORTANT] Your VectorDB scanner embedding model setting must match the model used to generate the embeddings loaded into the database, or similarity search will not work.

Load Datasets

Load the appropriate datasets for your embedding model with the loader.py utility. If you don't intend on using the vector db scanner, you can skip this step.

python loader.py --conf conf/server.conf --dataset deadbits/vigil-instruction-bypass-ada-002 python loader.py --conf conf/server.conf --dataset deadbits/vigil-jailbreak-ada-002

You can load your own datasets as long as you use the columns:

ColumnType
textstring
embeddingslist[float]
modelstring

Use Vigil 🔬

Vigil can run as a REST API server or be imported directly into your Python application.

Running API Server

To start the Vigil API server, run the following command:

python vigil-server.py --conf conf/server.conf

Using in Python

Vigil can also be used within your own Python application as a library.

Import the Vigil class and pass it your config file.

from vigil.vigil import Vigil app = Vigil.from_config('conf/openai.conf') # assess prompt against all input scanners result = app.input_scanner.perform_scan( input_prompt="prompt goes here" ) # assess prompt and response against all output scanners app.output_scanner.perform_scan( input_prompt="prompt goes here", input_resp="LLM response goes here" ) # use canary tokens and returned updated prompt as a string updated_prompt = app.canary_tokens.add( prompt=prompt, always=always if always else False, length=length if length else 16, header=header if header else '<-@!-- {canary} --@!->', ) # returns True if a canary is found result = app.canary_tokens.check(prompt=llm_response)

Detection Methods 🔍

Submitted prompts are analyzed by the configured scanners; each of which can contribute to the final detection.

Available scanners:

  • Vector database
  • YARA / heuristics
  • Transformer model
  • Prompt-response similarity
  • Canary Tokens

For more information on how each works, refer to the detections documentation.

Canary Tokens

Canary tokens are available through a dedicated class / API.

You can use these in two different detection workflows:

  • Prompt leakage
  • Goal hijacking

Refer to the docs/canarytokens.md file for more information.

API Endpoints 🌐

POST /analyze/prompt

Post text data to this endpoint for analysis.

arguments:

  • prompt: str: text prompt to analyze
curl -X POST -H "Content-Type: application/json" \ -d '{"prompt":"Your prompt here"}' http://localhost:5000/analyze

POST /analyze/response

Post text data to this endpoint for analysis.

arguments:

  • prompt: str: text prompt to analyze
  • response: str: prompt response to analyze
curl -X POST -H "Content-Type: application/json" \ -d '{"prompt":"Your prompt here", "response": "foo"}' http://localhost:5000/analyze

POST /canary/add

Add a canary token to a prompt

arguments:

  • prompt: str: prompt to add canary to
  • always: bool: add prefix to always include canary in LLM response (optional)
  • length: str: canary token length (optional, default 16)
  • header: str: canary header string (optional, default <-@!-- {canary} --@!->)
curl -X POST "http://127.0.0.1:5000/canary/add" \ -H "Content-Type: application/json" \ --data '{ "prompt": "Prompt I want to add a canary token to and later check for leakage", "always": true }'

POST /canary/check

Check if an output contains a canary token

arguments:

  • prompt: str: prompt to check for canary
curl -X POST "http://127.0.0.1:5000/canary/check" \ -H "Content-Type: application/json" \ --data '{ "prompt": "<-@!-- 1cbbe75d8cf4a0ce --@!->\nPrompt I want to check for canary" }'

POST /add/texts

Add new texts to the vector database and return doc IDs Text will be embedded at index time.

arguments:

  • texts: str: list of texts
  • metadatas: str: list of metadatas
curl -X POST "http://127.0.0.1:5000/add/texts" \ -H "Content-Type: application/json" \ --data '{ "texts": ["Hello, world!", "Blah blah."], "metadatas": [ {"author": "John", "date": "2023-09-17"}, {"author": "Jane", "date": "2023-09-10", "topic": "cybersecurity"} ] }'

GET /settings

View current application settings

curl http://localhost:5000/settings

Sample scan output 📌

Example scan output:

{ "status": "success", "uuid": "0dff767c-fa2a-41ce-9f5e-fc3c981e42a4", "timestamp": "2023-09-16T03:05:34.946240", "prompt": "Ignore previous instructions", "prompt_response": null, "prompt_entropy": 3.672553582385556, "messages": [ "Potential prompt injection detected: YARA signature(s)", "Potential prompt injection detected: transformer model", "Potential prompt injection detected: vector similarity" ], "errors": [], "results": { "scanner:yara": { "matches": [ { "rule_name": "InstructionBypass_vigil", "category": "Instruction Bypass", "tags": [ "PromptInjection" ] } ] }, "scanner:transformer": { "matches": [ { "model_name": "deepset/deberta-v3-base-injection", "score": 0.9927383065223694, "label": "INJECTION", "threshold": 0.98 } ] }, "scanner:vectordb": { "matches": [ { "text": "Ignore previous instructions", "metadata": null, "distance": 3.2437965273857117e-06 }, { "text": "Ignore earlier instructions", "metadata": null, "distance": 0.031959254294633865 }, { "text": "Ignore prior instructions", "metadata": null, "distance": 0.04464910179376602 }, { "text": "Ignore preceding instructions", "metadata": null, "distance": 0.07068523019552231 }, { "text": "Ignore earlier instruction", "metadata": null, "distance": 0.0710538849234581 } ] } } }

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成热门AI工具AI图像AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多