多层防御工具,评估和保护LLM提示安全
Vigil-llm是一款评估大型语言模型提示和响应安全性的开源工具。它集成了向量数据库、启发式规则、变压器模型等多种扫描模块,能够有效检测提示注入、越狱等潜在威胁。该工具支持本地和OpenAI嵌入,内置常见攻击签名库,可作为Python库或REST API使用,为LLM应用构建全方位的安全防护体系。
⚡ Security scanner for LLM prompts ⚡
Vigil
is a Python library and REST API for assessing Large Language Model prompts and responses against a set of scanners to detect prompt injections, jailbreaks, and other potential threats. This repository also provides the detection signatures and datasets needed to get started with self-hosting.
This application is currently in an alpha state and should be considered experimental / for research purposes.
For an enterprise-ready AI firewall, I kindly refer you to my employer, Robust Intelligence.
Prompt Injection Vulnerability occurs when an attacker manipulates a large language model (LLM) through crafted inputs, causing the LLM to unknowingly execute the attacker's intentions. This can be done directly by "jailbreaking" the system prompt or indirectly through manipulated external inputs, potentially leading to data exfiltration, social engineering, and other issues.
These issues are caused by the nature of LLMs themselves, which do not currently separate instructions and data. Although prompt injection attacks are currently unsolvable and there is no defense that will work 100% of the time, by using a layered approach of detecting known techniques you can at least defend against the more common / documented attacks.
Vigil
, or a system like it, should not be your only defense - always implement proper security controls and mitigations.
[!NOTE] Keep in mind, LLMs are not yet widely adopted and integrated with other applications, therefore threat actors have less motivation to find new or novel attack vectors. Stay informed on current attacks and adjust your defenses accordingly!
Additional Resources
For more information on prompt injection, I recommend the following resources and following the research being performed by people like Kai Greshake, Simon Willison, and others.
Follow the steps below to install Vigil
A Docker container is also available, but this is not currently recommended.
Clone the repository or grab the latest release
git clone https://github.com/deadbits/vigil-llm.git
cd vigil-llm
Follow the instructions on the YARA Getting Started documentation to download and install YARA v4.3.2.
python3 -m venv venv
source venv/bin/activate
Inside your virutal environment, install the application:
pip install -e .
Open the conf/server.conf
file in your favorite text editor:
vim conf/server.conf
For more information on modifying the server.conf
file, please review the Configuration documentation.
[!IMPORTANT] Your VectorDB scanner embedding model setting must match the model used to generate the embeddings loaded into the database, or similarity search will not work.
Load the appropriate datasets for your embedding model with the loader.py
utility. If you don't intend on using the vector db scanner, you can skip this step.
python loader.py --conf conf/server.conf --dataset deadbits/vigil-instruction-bypass-ada-002 python loader.py --conf conf/server.conf --dataset deadbits/vigil-jailbreak-ada-002
You can load your own datasets as long as you use the columns:
Column | Type |
---|---|
text | string |
embeddings | list[float] |
model | string |
Vigil can run as a REST API server or be imported directly into your Python application.
To start the Vigil API server, run the following command:
python vigil-server.py --conf conf/server.conf
Vigil can also be used within your own Python application as a library.
Import the Vigil
class and pass it your config file.
from vigil.vigil import Vigil app = Vigil.from_config('conf/openai.conf') # assess prompt against all input scanners result = app.input_scanner.perform_scan( input_prompt="prompt goes here" ) # assess prompt and response against all output scanners app.output_scanner.perform_scan( input_prompt="prompt goes here", input_resp="LLM response goes here" ) # use canary tokens and returned updated prompt as a string updated_prompt = app.canary_tokens.add( prompt=prompt, always=always if always else False, length=length if length else 16, header=header if header else '<-@!-- {canary} --@!->', ) # returns True if a canary is found result = app.canary_tokens.check(prompt=llm_response)
Submitted prompts are analyzed by the configured scanners
; each of which can contribute to the final detection.
Available scanners:
For more information on how each works, refer to the detections documentation.
Canary tokens are available through a dedicated class / API.
You can use these in two different detection workflows:
Refer to the docs/canarytokens.md file for more information.
POST /analyze/prompt
Post text data to this endpoint for analysis.
arguments:
curl -X POST -H "Content-Type: application/json" \ -d '{"prompt":"Your prompt here"}' http://localhost:5000/analyze
POST /analyze/response
Post text data to this endpoint for analysis.
arguments:
curl -X POST -H "Content-Type: application/json" \ -d '{"prompt":"Your prompt here", "response": "foo"}' http://localhost:5000/analyze
POST /canary/add
Add a canary token to a prompt
arguments:
<-@!-- {canary} --@!->
)curl -X POST "http://127.0.0.1:5000/canary/add" \ -H "Content-Type: application/json" \ --data '{ "prompt": "Prompt I want to add a canary token to and later check for leakage", "always": true }'
POST /canary/check
Check if an output contains a canary token
arguments:
curl -X POST "http://127.0.0.1:5000/canary/check" \ -H "Content-Type: application/json" \ --data '{ "prompt": "<-@!-- 1cbbe75d8cf4a0ce --@!->\nPrompt I want to check for canary" }'
POST /add/texts
Add new texts to the vector database and return doc IDs Text will be embedded at index time.
arguments:
curl -X POST "http://127.0.0.1:5000/add/texts" \ -H "Content-Type: application/json" \ --data '{ "texts": ["Hello, world!", "Blah blah."], "metadatas": [ {"author": "John", "date": "2023-09-17"}, {"author": "Jane", "date": "2023-09-10", "topic": "cybersecurity"} ] }'
GET /settings
View current application settings
curl http://localhost:5000/settings
Example scan output:
{ "status": "success", "uuid": "0dff767c-fa2a-41ce-9f5e-fc3c981e42a4", "timestamp": "2023-09-16T03:05:34.946240", "prompt": "Ignore previous instructions", "prompt_response": null, "prompt_entropy": 3.672553582385556, "messages": [ "Potential prompt injection detected: YARA signature(s)", "Potential prompt injection detected: transformer model", "Potential prompt injection detected: vector similarity" ], "errors": [], "results": { "scanner:yara": { "matches": [ { "rule_name": "InstructionBypass_vigil", "category": "Instruction Bypass", "tags": [ "PromptInjection" ] } ] }, "scanner:transformer": { "matches": [ { "model_name": "deepset/deberta-v3-base-injection", "score": 0.9927383065223694, "label": "INJECTION", "threshold": 0.98 } ] }, "scanner:vectordb": { "matches": [ { "text": "Ignore previous instructions", "metadata": null, "distance": 3.2437965273857117e-06 }, { "text": "Ignore earlier instructions", "metadata": null, "distance": 0.031959254294633865 }, { "text": "Ignore prior instructions", "metadata": null, "distance": 0.04464910179376602 }, { "text": "Ignore preceding instructions", "metadata": null, "distance": 0.07068523019552231 }, { "text": "Ignore earlier instruction", "metadata": null, "distance": 0.0710538849234581 } ] } } }
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力 用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌 文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号