simple_rl

simple_rl

轻量级Python强化学习实验框架

simple_rl框架专注于简化强化学习实验流程和提高结果可复现性。它内置了网格世界、OpenAI Gym等MDP环境,实现了Q-learning和R-Max等经典算法。新增的实验复现功能方便研究者重现成果。该框架支持Python 2和3,为强化学习研究和教学提供了实用工具。

强化学习Python简单框架实验复现结果Github开源项目

simple_rl

一个用于在Python中进行强化学习实验的简单框架。

还有许多其他优秀的RL库。这个框架的目标有两个:

  1. 简单性。
  2. 结果的可重复性。

这里有一个稍早版本的简短教程[链接]。从0.77版本开始,该库应该同时支持Python 2和Python 3。如果您发现不是这样,请告诉我!

simple_rl需要[numpy]和[matplotlib]。一些MDP还有可视化功能,这需要[pygame]。同时还支持连接到任何[Open AI Gym环境]。该库附带了基本的测试脚本,包含在_tests_目录中。我建议在安装库时运行它并确保所有测试都通过。

[文档可在此处获取]

安装

最简单的安装方式是使用[pip]。只需运行:

pip install simple_rl

或者,您可以在[这里]下载simple_rl。

引用

如果您在研究中使用simple_rl,请按以下方式引用[研讨会论文]:

@article{abel2019simple_rl,
  title={simple_rl: Reproducible Reinforcement Learning in Python},
  author={David Abel},
  booktitle={ICLR Workshop on Reproducibility in Machine Learning},
  year={2019}
}

新功能:轻松重现结果

我刚刚添加了一个令我相当兴奋的新功能:轻松重现结果。现在每次实验运行都会在_results/exp_name/目录中输出一个"full_experiment.txt"文件。新函数_reproduce_from_exp_file(file_name),当指向一个实验目录时,将根据这个文件重新组装并重新运行整个实验。这里的目标是鼓励简单地跟踪实验并实现快速结果复现。但它只适用于MDP - 目前还不适用于OOMDP、POMDP或MarkovGames(如果有人想让它工作,我会很高兴)。

请查看下面的第二个示例,快速了解如何使用此功能。

示例

[examples]目录中包含了一些展示基本功能的示例。

要运行一个简单的实验,从_simple_rl.run_experiments_导入_run_agents_on_mdp(agent_list, mdp)_方法,并使用一些代理为给定的MDP调用它。例如:

# 导入
from simple_rl.run_experiments import run_agents_on_mdp
from simple_rl.tasks import GridWorldMDP
from simple_rl.agents import QLearningAgent

# 运行实验
mdp = GridWorldMDP()
agent = QLearningAgent(mdp.get_actions())
run_agents_on_mdp([agent], mdp)

运行上述代码将在简单的GridWorld上运行_Q_-learning。完成后,它会将结果存储在_cur_dir/results/*_中,并生成并打开以下图表:

[图片]

对于稍微复杂一点的示例,请查看_simple_example.py_的代码。这里我们在Russell-Norvig人工智能教科书中的网格世界上运行两个代理:

from simple_rl.agents import QLearningAgent, RandomAgent, RMaxAgent
from simple_rl.tasks import GridWorldMDP
from simple_rl.run_experiments import run_agents_on_mdp

# 设置MDP
mdp = GridWorldMDP(width=4, height=3, init_loc=(1, 1), goal_locs=[(4, 3)], lava_locs=[(4, 2)], gamma=0.95, walls=[(2, 2)], slip_prob=0.05)

# 设置代理
ql_agent = QLearningAgent(actions=mdp.get_actions())
rmax_agent = RMaxAgent(actions=mdp.get_actions())
rand_agent = RandomAgent(actions=mdp.get_actions())

# 运行实验并生成图表
run_agents_on_mdp([ql_agent, rmax_agent, rand_agent], mdp, instances=5, episodes=50, steps=10)

上述代码将生成以下图表:

[图片]

为了展示新的可重复性功能,假设我们现在想重现上述实验。我们只需执行以下操作:

from simple_rl.run_experiments import reproduce_from_exp_file

reproduce_from_exp_file("gridworld_h-3_w-4")

这将根据幕后创建和填充的文件重新运行整个实验。然后,我们应该得到以下图表:

[图片] 很简单!这是一个新功能,可能会有一些bug——如果遇到问题请告诉我。目前它只适用于MDP,不适用于POMDP/OOMDP/MarkovGameMDP。更多详细信息请查看reproduce_example.py

概述

  • (agents):一些基本代理的代码(随机行为者、Q-learning、[R-Max]、带线性近似器的_Q_-learning等)。

  • (experiments):用于跟踪参数和重现结果的Experiment类代码。

  • (mdp):基本MDP和MDPState类的代码,以及MDPDistribution类(用于终身学习)。还包含OO-MDP实现[Diuk et al. 2008]

  • (planning):规划算法的实现,包括ValueIteration和MCTS [Couloum 2006],后者仍在开发中。

  • (tasks):一些标准MDP的实现(网格世界、N链、出租车[Dietterich 2000]OpenAI Gym)。

  • (utils):图表和其他实用工具的代码。

贡献

如果你想贡献代码:太好了!请查看下面列出的一些需要改进的地方:我很希望有人能处理这些项目。请参阅贡献指南。如有任何问题,请给我发邮件。

创建新的MDP

创建一个MDP子类,需要:

  • 一个静态变量_ACTIONS_,它是一个字符串列表,表示每个动作。

  • 实现奖励函数和转移函数,并将它们与_ACTIONS_一起传递给MDP构造函数。

  • 我还建议重写类的"str"方法,并在目录中添加一个"init.py"文件。

  • 为你的MDP创建一个State子类(如果需要)。我建议重写类的"hash"、"eq"和"str"方法,以便与代理良好配合。

创建新的代理

创建一个Agent子类,需要:

  • 一个方法_act(self, state, reward)_,返回一个动作。

  • 一个方法_reset()_,将代理重置为初始状态。

开发中

我希望添加以下功能:

  • 规划:完成MCTS [Coloum 2006],实现RTDP [Barto et al. 1995]
  • 深度强化学习:用PyTorch编写DQN [Mnih et al. 2015],可能还有其他算法(某种策略梯度)。
  • 效率:将大多数defaultdict/dict用法转换为numpy。
  • 可重现性:新的重现功能范围有限——我希望有人能将其扩展到OO-MDP、规划、MarkovGames、POMDP等领域。
  • 文档:教程和文档。
  • 可视化:统一MDP可视化。
  • 其他:额外的测试。

祝好,

-Dave

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多