
优化Spark应用性能的开源分析工具
Delight是一款开源的Spark应用性能分析工具,为Spark UI和History Server提供替代方案。它适用于各种Spark平台,通过直观的界面展示执行器CPU使用情况和内存峰值等关键指标。Delight集成了Spark History Server功能,简化了Spark UI的访问过程。该工具使用开源agent收集Spark事件,并在应用完成后在托管仪表板上呈现详细分析结果,助力开发者优化Spark应用性能。
Delight is a free Spark UI & Spark History Server alternative with new metrics and visualizations that will delight you!
The Delight project is developed by Data Mechanics, which is now part of the Spot family. Delight works on top of any Spark platform, whether it's open-source or commercial, in the cloud or on-premise.
The Delight web dashboard lists your completed Spark applications with high-level information and metrics.
<p align="center"> <a href="documentation/images/delight_dashboard.png"><img src="documentation/images/delight_dashboard.png" width="80%" align="middle"></a> </p>When you click on a specific application, you access an overview screen for this application. It contains a graph of your Executor Cores Usage, broken down by categories. This graph is aligned with a timeline of your Spark jobs and stages, so that it's easy for you to correlate CPU metrics with the code of your Spark application.
For example, Delight made it obvious that this application (left) suffered from a slow shuffle. After using instances with mounted local SSDs (right), the application performance improved by over 10x.
<a href="documentation/images/before.png"><img src="documentation/images/before.png" width="45%"></a> <a href="documentation/images/after.png"><img src="documentation/images/after.png" width="45%"></a>
Under this graph, you will get a report of the peak memory usage of your Spark executors (the overview screen shows the top 5 executors). This graph should help you tune your container memory sizes - so that memory usage stays in the 70-90% range. This graph breaks down memory usage between JVM, Python, and other processes (at the time of the peak total usage).
<p align="center"> <a href="documentation/images/memory.png"><img src="documentation/images/memory.png" width="65%"></a> </p>Delight also runs a Spark History Server for you, so it's a great way to access the Spark UI, without having to setup and maintain a Spark History Server yourself.
Delight consists of an open-sourced agent, which runs inside your Spark application (using the SparkListener interface).

This agent streams Spark events to Delight backend. These contain metadata about your Spark application execution: how long each task took, how much data was read & written, how much memory was used, etc. These logs do not contain sensitive information like the data that your Spark application is processing. Here's a sample Spark event and a full Spark event log.
Once your application is finished, it becomes available on the Delight hosted dashboard. It gives you access to high-level metrics, to a new Delight screen showing CPU & Memory metrics, and to the Spark UI.
To use Delight:
Here are the available instructions:
spark-submit CLIspark-submit CLIDelight is compatible with Spark 2.4.0 to Spark 3.3.0 with the following Maven coordinates:
co.datamechanics:delight_<replace-with-your-scala-version-2.11-or-2.12>:latest-SNAPSHOT
We also maintain a version compatible with Spark 2.3.x.
Please use the following Maven coordinates to use it:
co.datamechanics:delight_2.11:2.3-latest-SNAPSHOT
Delight is compatible with Pyspark. But even if you use Python, you'll have to determine the Scala version used by your Spark distribution and fill out the placeholder above in the Maven coordinates!
| Config | Explanation | Default value |
|---|---|---|
spark.delight.accessToken.secret | An access token to authenticate yourself with Delight. If the access token is missing, the listener will not stream events | (none) |
spark.delight.appNameOverride | The name of the app that will appear in Delight. This is only useful if your platform does not allow you to set spark.app.name. | spark.app.name |
We've listed more technical configurations in this section for completeness. You should not need to change the values of these configurations though, so drop us a line if you do, we'll be interested to know more!
| Config | Explanation | Default value |
|---|---|---|
spark.delight.collector.url | URL of the Delight collector API | https://api.delight.datamechanics.co/collector/ |
spark.delight.buffer.maxNumEvents | The number of Spark events to reach before triggering a call to Delight Collector API. Special events like job ends also trigger a call. | 1000 |
spark.delight.payload.maxNumEvents | The maximum number of Spark events to be sent in one call to Delight Collector API. | 10000 |
spark.delight.heartbeatIntervalSecs | (Internal config) the interval at which the listener send an heartbeat requests to the API. It allow us to detect if the app was prematurely finished and start the processing ASAP | 10s |
spark.delight.pollingIntervalSecs | (Internal config) the interval at which the object responsible for calling the API checks whether there are new payloads to be sent | 0.5s |
spark.delight.maxPollingIntervalSecs | (Internal config) upon connection error, the polling interval increases exponentially until this value. It returns to its initial value once a call to the API passes through | 60s |
spark.delight.maxWaitOnEndSecs | (Internal config) the time the Spark application waits for remaining payloads to be sent after the event SparkListenerApplicationEnd. Not applicable in the case of Databricks | 10s |
spark.delight.waitForPendingPayloadsSleepIntervalSecs | (Internal config) the interval at which the object responsible for calling the API checks whether there are new remaining to be sent, after the event SparkListenerApplicationEnd is received. Not applicable in the case of Databricks | 1s |
spark.delight.logDuration | (Debugging config) whether to log the duration of the operations performed by the Spark listener | false |
If you don't find the answer you're loooking for, contact us through the chat window on the bottom right corner of your Delight dashboard.
Yes, it's entirely free of charge.
Delight consists of two components:
Delight collects Spark event logs. This is non-sensitive metadata about your Spark application execution (for example, for each Spark task there is metadata on memory usage, CPU usage, network traffic). Delight does not record any sensitive information (like the data that your application operates on). This data is encrypted with your access token and sent over HTTPS to the Delight backend. Your access token guarantees that the metrics collected will only be visible to yourself (and to your colleagues, if you signed up with your company's Google account).
This data is automatically deleted 30 days its collection, and it is not shared with any third party.
The efficiency ratio is calculated as the sum of the duration of all the Spark tasks, divided by the sum of the core uptime of your Spark executors.
An efficiency score of 75% means that on average, your Spark executor cores are running Spark tasks three quarter of the time. A low efficiency score means that you are wasting a lot of your compute resources. The Ocean for Apache Spark platform automatically tunes your Spark application configurations to make them more efficient!
No, at this moment you can only access Delight once your app has completed. This means that Delight is not suited for long-running applications (like interactive clusters staying up 24x7, or streaming jobs).
Making Delight accessible in real time is on our roadmap.
At this time, the only sign in method is using a Google account. We'll be adding support for login+password authentication in the future.
If you sign up using the same Google organization as your colleague, you will automatically share the same dashboard. You don't need to invite your colleague, they can just sign up and get started.
The Delight UI is accessible for 30 days after the app completion. After this time, the logs are deleted.
There's also a limit of 10,000 apps per customer. If you reach this limit, we will start cleaning up the logs of your oldest apps.
I installed Delight and saw the following error in the driver logs. How do I solve it?
Exception in thread "main" java.lang.NoSuchMethodError: org.apache.spark.internal.Logging.$init$(Lorg/apache/spark/internal/Logging;)V
at co.datamechanics.delight.DelightListener.<init>(DelightListener.scala:11)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
This probably means that the Scala version of Delight does not match the Scala version of the Spark distribution.
If you specified co.datamechanics:delight_2.11:latest-SNAPSHOT, please change to co.datamechanics:delight_2.12:latest-SNAPSHOT. And vice versa!
The Delight jar attached to your Spark driver produces troubleshooting logs within the Spark Driver logs. Look for the class name DelightStreamingConnector. There should be INFO logs printed when your application starts.
If you don't see these logs, you may need to modify the log4j configuration file used by Spark to add this line:
log4j.logger.co.datamechanics.delight=INFO


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全 ,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号