PySnooper

PySnooper

将Python调试变得简单高效的开源工具

PySnooper是一款开源的Python调试工具,通过简单的装饰器实现函数执行日志的生成。它能够记录代码执行顺序和变量变化,并支持深入调用函数的追踪。该工具提供输出重定向、表达式监控和调用深度控制等功能,适用于各种规模的项目。PySnooper无需复杂配置,一行代码即可启用,为开发者提供了一种替代print语句的高效调试方法。

PySnooperPython调试代码追踪日志输出变量监视Github开源项目

PySnooper - Never use print for debugging again

PySnooper is a poor man's debugger. If you've used Bash, it's like set -x for Python, except it's fancier.

Your story: You're trying to figure out why your Python code isn't doing what you think it should be doing. You'd love to use a full-fledged debugger with breakpoints and watches, but you can't be bothered to set one up right now.

You want to know which lines are running and which aren't, and what the values of the local variables are.

Most people would use print lines, in strategic locations, some of them showing the values of variables.

PySnooper lets you do the same, except instead of carefully crafting the right print lines, you just add one decorator line to the function you're interested in. You'll get a play-by-play log of your function, including which lines ran and when, and exactly when local variables were changed.

What makes PySnooper stand out from all other code intelligence tools? You can use it in your shitty, sprawling enterprise codebase without having to do any setup. Just slap the decorator on, as shown below, and redirect the output to a dedicated log file by specifying its path as the first argument.

Example

We're writing a function that converts a number to binary, by returning a list of bits. Let's snoop on it by adding the @pysnooper.snoop() decorator:

import pysnooper @pysnooper.snoop() def number_to_bits(number): if number: bits = [] while number: number, remainder = divmod(number, 2) bits.insert(0, remainder) return bits else: return [0] number_to_bits(6)

The output to stderr is:

Or if you don't want to trace an entire function, you can wrap the relevant part in a with block:

import pysnooper import random def foo(): lst = [] for i in range(10): lst.append(random.randrange(1, 1000)) with pysnooper.snoop(): lower = min(lst) upper = max(lst) mid = (lower + upper) / 2 print(lower, mid, upper) foo()

which outputs something like:

New var:....... i = 9
New var:....... lst = [681, 267, 74, 832, 284, 678, ...]
09:37:35.881721 line        10         lower = min(lst)
New var:....... lower = 74
09:37:35.882137 line        11         upper = max(lst)
New var:....... upper = 832
09:37:35.882304 line        12         mid = (lower + upper) / 2
74 453.0 832
New var:....... mid = 453.0
09:37:35.882486 line        13         print(lower, mid, upper)
Elapsed time: 00:00:00.000344

Features

If stderr is not easily accessible for you, you can redirect the output to a file:

@pysnooper.snoop('/my/log/file.log')

You can also pass a stream or a callable instead, and they'll be used.

See values of some expressions that aren't local variables:

@pysnooper.snoop(watch=('foo.bar', 'self.x["whatever"]'))

Show snoop lines for functions that your function calls:

@pysnooper.snoop(depth=2)

See Advanced Usage for more options. <------

Installation with Pip

The best way to install PySnooper is with Pip:

$ pip install pysnooper

Other installation options

Conda with conda-forge channel:

$ conda install -c conda-forge pysnooper

Arch Linux:

$ yay -S python-pysnooper

Fedora Linux:

$ dnf install python3-pysnooper

Citing PySnooper

If you use PySnooper in academic work, please use this citation format:

@software{rachum2019pysnooper, title={PySnooper: Never use print for debugging again}, author={Rachum, Ram and Hall, Alex and Yanokura, Iori and others}, year={2019}, month={jun}, publisher={PyCon Israel}, doi={10.5281/zenodo.10462459}, url={https://github.com/cool-RR/PySnooper} }

License

Copyright (c) 2019 Ram Rachum and collaborators, released under the MIT license.

Media Coverage

Hacker News thread and /r/Python Reddit thread (22 April 2019)

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多