stargz-snapshotter

stargz-snapshotter

容器延迟拉取技术提升启动速度

Stargz Snapshotter是containerd的快照插件,利用延迟拉取技术加快容器启动。它支持与OCI/Docker兼容的eStargz镜像格式,可存储于标准容器仓库。该技术允许容器在镜像完全下载前启动,并按需获取所需数据。通过运行时优化和内容验证等功能,Stargz Snapshotter有效缩短容器启动时间,对大型镜像尤其有效。

Stargz Snapshotter容器懒加载eStargzcontainerdGithub开源项目

[⬇️ Download] [📔Browse images] [☸Quick Start (Kubernetes)] [🤓Quick Start (nerdctl)] [🔆Install]

Stargz Snapshotter

Tests Status Benchmarking Nightly

Read also introductory blog: Startup Containers in Lightning Speed with Lazy Image Distribution on Containerd

Pulling image is one of the time-consuming steps in the container lifecycle. Research shows that time to take for pull operation accounts for 76% of container startup time[FAST '16]. Stargz Snapshotter is an implementation of snapshotter which aims to solve this problem by lazy pulling. Lazy pulling here means a container can run without waiting for the pull completion of the image and necessary chunks of the image are fetched on-demand.

eStargz is a lazily-pullable image format proposed by this project. This is compatible to OCI/Docker images so this can be pushed to standard container registries (e.g. ghcr.io) as well as this is still runnable even on eStargz-agnostic runtimes including Docker. eStargz format is based on stargz image format by CRFS but comes with additional features like runtime optimization and content verification.

The following histogram is the benchmarking result for startup time of several containers measured on Github Actions, using GitHub Container Registry.

<img src="docs/images/benchmarking-result-ecdb227.png" width="600" alt="The benchmarking result on ecdb227">

legacy shows the startup performance when we use containerd's default snapshotter (overlayfs) with images copied from docker.io/library without optimization. For this configuration, containerd pulls entire image contents and pull operation takes accordingly. When we use stargz snapshotter with eStargz-converted images but without any optimization (estargz-noopt) we are seeing performance improvement on the pull operation because containerd can start the container without waiting for the pull completion and fetch necessary chunks of the image on-demand. But at the same time, we see the performance drawback for run operation because each access to files takes extra time for fetching them from the registry. When we use eStargz with optimization (estargz), we can mitigate the performance drawback observed in estargz-noopt images. This is because stargz snapshotter prefetches and caches likely accessed files during running the container. On the first container creation, stargz snapshotter waits for the prefetch completion so create sometimes takes longer than other types of image. But it's still shorter than waiting for downloading all files of all layers.

The above histogram is the benchmarking result on the commit ecdb227. We are constantly measuring the performance of this snapshotter so you can get the latest one through the badge shown top of this doc. Please note that we sometimes see dispersion among the results because of the NW condition on the internet and the location of the instance in the Github Actions, etc. Our benchmarking method is based on HelloBench.

:nerd_face: You can also run containers on IPFS with lazy pulling. This is an experimental feature. See ./docs/ipfs.md for more details.

Stargz Snapshotter is a non-core sub-project of containerd.

Quick Start with Kubernetes

For using stargz snapshotter on kubernetes nodes, you need the following configuration to containerd as well as run stargz snapshotter daemon on the node. We assume that you are using containerd (> v1.4.2) as a CRI runtime.

version = 2 # Plug stargz snapshotter into containerd # Containerd recognizes stargz snapshotter through specified socket address. # The specified address below is the default which stargz snapshotter listen to. [proxy_plugins] [proxy_plugins.stargz] type = "snapshot" address = "/run/containerd-stargz-grpc/containerd-stargz-grpc.sock" # Use stargz snapshotter through CRI [plugins."io.containerd.grpc.v1.cri".containerd] snapshotter = "stargz" disable_snapshot_annotations = false

Note that disable_snapshot_annotations = false is required since containerd > v1.4.2

You can try our prebuilt KinD node image that contains the above configuration.

$ kind create cluster --name stargz-demo --image ghcr.io/containerd/stargz-snapshotter:0.12.1-kind

:information_source: kind binary v0.16.x or newer is recommended for ghcr.io/containerd/stargz-snapshotter:0.12.1-kind.

:information_source: You can get latest node images from ghcr.io/containerd/stargz-snapshotter:${VERSION}-kind namespace.

Then you can create eStargz pods on the cluster. In this example, we create a stargz-converted Node.js pod (ghcr.io/stargz-containers/node:17.8.0-esgz) as a demo.

apiVersion: v1 kind: Pod metadata: name: nodejs spec: containers: - name: nodejs-stargz image: ghcr.io/stargz-containers/node:17.8.0-esgz command: ["node"] args: - -e - var http = require('http'); http.createServer(function(req, res) { res.writeHead(200); res.end('Hello World!\n'); }).listen(80); ports: - containerPort: 80

The following command lazily pulls ghcr.io/stargz-containers/node:17.8.0-esgz from Github Container Registry and creates the pod so the time to take for it is shorter than the original image library/node:13.13.

$ kubectl --context kind-stargz-demo apply -f stargz-pod.yaml && kubectl --context kind-stargz-demo get po nodejs -w $ kubectl --context kind-stargz-demo port-forward nodejs 8080:80 & $ curl 127.0.0.1:8080 Hello World!

Stargz snapshotter also supports further configuration including private registry authentication, mirror registries, etc.

Getting eStargz images

For lazy pulling images, you need to prepare eStargz images first. There are several ways to achieve that. This section describes some of them.

Trying pre-built eStargz images

You can try our pre-converted eStargz images on ghcr.io listed in Trying pre-converted images.

Building eStargz images using BuildKit

BuildKit supports building eStargz image since v0.10.

You can try it using Docker Buildx. The following command builds an eStargz image and push it to ghcr.io/ktock/hello:esgz. Flags oci-mediatypes=true,compression=estargz enable to build eStargz.

$ docker buildx build -t ghcr.io/ktock/hello:esgz \
    -o type=registry,oci-mediatypes=true,compression=estargz,force-compression=true \
    /tmp/buildctx/

NOTE1: force-compression=true isn't needed if the base image is already eStargz.

NOTE2: Docker still does not support lazy pulling of eStargz.

eStargz-enabled BuildKit (v0.10) will be included to Docker v22.XX however you can build eStargz images with the prior version using Buildx driver feature. You can enable the specific version of BuildKit using docker buildx create (this example specifies v0.10.3).

$ docker buildx create --use --name v0.10.3 --driver docker-container --driver-opt image=moby/buildkit:v0.10.3
$ docker buildx inspect --bootstrap v0.10.3

Building eStargz images using Kaniko

Kaniko is an image builder runnable in containers and Kubernetes. Since v1.5.0, it experimentally supports building eStargz. GGCR_EXPERIMENT_ESTARGZ=1 is needed.

$ docker run --rm -e GGCR_EXPERIMENT_ESTARGZ=1 \ -v /tmp/buildctx:/workspace -v ~/.docker/config.json:/kaniko/.docker/config.json:ro \ gcr.io/kaniko-project/executor:v1.8.1 --destination ghcr.io/ktock/hello:esgz

Building eStargz images using nerdctl

nerdctl, Docker-compatible CLI of containerd, supports building eStargz images.

$ nerdctl build -t ghcr.io/ktock/hello:1 /tmp/buildctx $ nerdctl image convert --estargz --oci ghcr.io/ktock/hello:1 ghcr.io/ktock/hello:esgz $ nerdctl push ghcr.io/ktock/hello:esgz

NOTE: --estargz should be specified in conjunction with --oci

Please refer to nerdctl document for details for further information (e.g. lazy pulling): https://github.com/containerd/nerdctl/blob/master/docs/stargz.md

Creating eStargz images using ctr-remote

ctr-remote allows converting an image into eStargz with optimizing it. As shown in the above benchmarking result, on-demand lazy pulling improves the performance of pull but causes runtime performance penalty because reading files induce remotely downloading contents. For solving this, ctr-remote has workload-based optimization for images.

For trying the examples described in this section, you can also use the docker-compose-based demo environment. You can setup this environment as the following commands (put this repo on ${GOPATH}/src/github.com/containerd/stargz-snapshotter). Note that this runs privileged containers on your host.

$ cd ${GOPATH}/src/github.com/containerd/stargz-snapshotter/script/demo $ docker-compose build containerd_demo $ docker-compose up -d $ docker exec -it containerd_demo /bin/bash (inside container) # ./script/demo/run.sh

Generally, container images are built with purpose and the workloads are defined in the Dockerfile with some parameters (e.g. entrypoint, envvars and user). By default, ctr-remote optimizes the performance of reading files that are most likely accessed in the workload defined in the Dockerfile. You can also specify the custom workload using options if needed.

The following example converts the legacy library/ubuntu:20.04 image into eStargz. The command also optimizes the image for the workload of executing ls on /bin/bash. The thing actually done is it runs the specified workload in a temporary container and profiles all file accesses with marking them as likely accessed also during runtime. The converted image is still docker-compatible so you can run it with eStargz-agnostic runtimes (e.g. Docker).

# ctr-remote image pull docker.io/library/ubuntu:20.04 # ctr-remote image optimize --oci --entrypoint='[ "/bin/bash", "-c" ]' --args='[ "ls" ]' docker.io/library/ubuntu:20.04 registry2:5000/ubuntu:20.04 # ctr-remote image push --plain-http registry2:5000/ubuntu:20.04

Finally, the following commands clear the local cache then pull the eStargz image lazily. Stargz snapshotter prefetches files that are most likely accessed in the optimized workload, which hopefully increases the cache hit rate for that workload and mitigates runtime overheads as shown in the benchmarking result shown top of this doc.

# ctr-remote image rm --sync registry2:5000/ubuntu:20.04 # ctr-remote images rpull --plain-http registry2:5000/ubuntu:20.04 fetching sha256:610399d1... application/vnd.oci.image.index.v1+json fetching sha256:0b4a26b4... application/vnd.oci.image.manifest.v1+json fetching sha256:8d8d9dbe... application/vnd.oci.image.config.v1+json # ctr-remote run --rm -t --snapshotter=stargz registry2:5000/ubuntu:20.04 test /bin/bash root@8eabb871a9bd:/# ls bin boot dev etc home lib lib32 lib64 libx32 media mnt opt proc root run sbin srv sys tmp usr var

NOTE: You can perform lazy pulling from any OCI-compatible registries (e.g. docker.io, ghcr.io, etc) as long as the image is formatted as eStargz.

Importing Stargz Snapshotter as go module

Currently, Stargz Snapshotter repository contains two Go modules as the following and both of them need to be imported.

  • github.com/containerd/stargz-snapshotter
  • github.com/containerd/stargz-snapshotter/estargz

Please make sure you import the both of them and they point to the same commit version.

Project details

Stargz Snapshotter is a containerd non-core sub-project, licensed under the Apache 2.0 license. As a containerd non-core sub-project, you will find the:

information in our containerd/project

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多