concourse

concourse

Go语言开发的可扩展自动化CI/CD系统

Concourse是一个Go语言开发的自动化系统,专注于CI/CD领域。它能够处理从简单到复杂的各类自动化流水线。该系统强调幂等性、不可变性、声明式配置、无状态工作节点和可重现构建。目前正在开发的v10版本将显著增强其作为通用自动化工具的功能,尤其是在多分支和PR驱动的工作流程方面。

ConcourseCI/CD自动化系统管道配置持续集成Github开源项目

Concourse: the continuous thing-doer.

Discord Build Contributors Help Wanted

Concourse is an automation system written in Go. It is most commonly used for CI/CD, and is built to scale to any kind of automation pipeline, from simple to complex.

booklit pipeline

Concourse is very opinionated about a few things: idempotency, immutability, declarative config, stateless workers, and reproducible builds.

The road to Concourse v10

Concourse v10 is the code name for a set of features which, when used in combination, will have a massive impact on Concourse's capabilities as a generic continuous thing-doer. These features, and how they interact, are described in detail in the Core roadmap: towards v10 and Re-inventing resource types blog posts. (These posts are slightly out of date, but they get the idea across.)

Notably, v10 will make Concourse not suck for multi-branch and/or pull-request driven workflows - examples of spatial change, where the set of things to automate grows and shrinks over time.

Because v10 is really an alias for a ton of separate features, there's a lot to keep track of - here's an overview:

FeatureRFCStatus
set_pipeline step#31✔ v5.8.0 (experimental)
Var sources for creds#39✔ v5.8.0 (experimental), TODO: #5813
Archiving pipelines#33✔ v6.5.0
Instanced pipelines#34✔ v7.0.0 (experimental)
Static across step🚧 #29✔ v6.5.0 (experimental)
Dynamic across step🚧 #29✔ v7.4.0 (experimental, not released yet)
Projects🚧 #32🙏 RFC needs feedback!
load_var step#27✔ v6.0.0 (experimental)
get_var step#27🚧 #5815 in progress!
Prototypes#37⚠ Pending first use of protocol (any of the below)
run step🚧 #37⚠ Pending its own RFC, but feel free to experiment
Resource prototypes#38🙏 #5870 looking for volunteers!
Var source prototypes🚧 #6275 planned, may lead to RFC
Notifier prototypes🚧 #28⚠ RFC not ready

The Concourse team at VMware will be working on these features, however in the interest of growing a healthy community of contributors we would really appreciate any volunteers. This roadmap is very easy to parallelize, as it is comprised of many orthogonal features, so the faster we can power through it, the faster we can all benefit. We want these for our own pipelines too! 😆

If you'd like to get involved, hop in Discord or leave a comment on any of the issues linked above so we can coordinate. We're more than happy to help figure things out or pick up any work that you don't feel comfortable doing (e.g. UI, unfamiliar parts, etc.).

Thanks to everyone who has contributed so far, whether in code or in the community, and thanks to everyone for their patience while we figure out how to support such common functionality the "Concoursey way!" 🙏

Installation

Concourse is distributed as a single concourse binary, available on the Releases page.

If you want to just kick the tires, jump ahead to the Quick Start.

In addition to the concourse binary, there are a few other supported formats. Consult their GitHub repos for more information:

Quick Start

$ wget https://concourse-ci.org/docker-compose.yml $ docker-compose up Creating docs_concourse-db_1 ... done Creating docs_concourse_1 ... done

Concourse will be running at 127.0.0.1:8080. You can log in with the username/password as test/test.

:warning: If you are using an M1 mac: M1 macs are incompatible with the containerd runtime. After downloading the docker-compose file, change CONCOURSE_WORKER_RUNTIME: "containerd" to CONCOURSE_WORKER_RUNTIME: "houdini". This feature is experimental

Next, install fly by downloading it from the web UI and target your local Concourse as the test user:

$ fly -t ci login -c http://127.0.0.1:8080 -u test -p test logging in to team 'main' target saved

Configuring a Pipeline

There is no GUI for configuring Concourse. Instead, pipelines are configured as declarative YAML files:

resources: - name: booklit type: git source: {uri: "https://github.com/vito/booklit"} jobs: - name: unit plan: - get: booklit trigger: true - task: test file: booklit/ci/test.yml

Most operations are done via the accompanying fly CLI. If you've got Concourse installed, try saving the above example as booklit.yml, target your Concourse instance, and then run:

fly -t ci set-pipeline -p booklit -c booklit.yml

These pipeline files are self-contained, maximizing portability from one Concourse instance to the next.

Learn More

Contributing

Our user base is basically everyone that develops software (and wants it to work).

It's a lot of work, and we need your help! If you're interested, check out our contributing docs.

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多