This project is no longer maintained, it will not get any fixes or support. It will be soon fully archived. Modern Conan 2.0 extensions can be found in https://github.com/conan-io/conan-extensions
The project Conan Package Tools does not support Conan 2.x and there is no current planned support.
In case you need such support, please, open an issue explaining your current case with more details.
This package allows to automate the creation of conan packages for different configurations.
It eases the integration with CI servers like TravisCI and Appveyor, so you can use the cloud to generate different binary packages for your conan recipe.
Also supports Docker to create packages for different GCC and Clang versions.
$ pip install conan_package_tools
Or you can clone this repository and store its location in PYTHONPATH.
Using only conan C/C++ package manager (without conan package tools), you can use the conan create command to generate, for the same recipe, different binary packages for different configurations.
The easier way to do it is using profiles:
$ conan create myuser/channel --profile win32
$ conan create myuser/channel --profile raspi
$ ...
The profiles can contain, settings, options, environment variables and build_requires. Take a look to the conan docs to know more.
Conan package tools allows to declare (or autogenerate) a set of different configurations (different profiles). It will call conan create for each one, uploading the generated packages
to a remote (if needed), and using optionally docker images to ease the creation of different binaries for different compiler versions (gcc and clang supported).
Create a build.py file in your recipe repository, and add the following lines:
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager(username="myusername")
builder.add(settings={"arch": "x86", "build_type": "Debug"},
options={}, env_vars={}, build_requires={})
builder.add(settings={"arch": "x86_64", "build_type": "Debug"},
options={}, env_vars={}, build_requires={})
builder.run()
Now we can run the python script, the ConanMutiPackager will run the conan create command two times, one to generate x86 Debug package and
another one for x86_64 Debug.
> python build.py
############## CONAN PACKAGE TOOLS ######################
INFO: ******** RUNNING BUILD **********
conan create myuser/testing --profile /var/folders/y1/9qybgph50sjg_3sm2_ztlm6dr56zsd/T/tmpz83xXmconan_package_tools_profiles/profile
[build_requires]
[settings]
arch=x86
build_type=Debug
[options]
[scopes]
[env]
...
############## CONAN PACKAGE TOOLS ######################
INFO: ******** RUNNING BUILD **********
conan create myuser/testing --profile /var/folders/y1/9qybgph50sjg_3sm2_ztlm6dr56zsd/T/tmpMiqSZUconan_package_tools_profiles/profile
[build_requires]
[settings]
arch=x86_64
build_type=Debug
[options]
[scopes]
[env]
#########################################################
...
If we inspect the local cache we can see that there are two binaries generated for our recipe, in this case the zlib recipe:
$ conan search zlib/1.2.11@myuser/testing
Existing packages for recipe zlib/1.2.11@myuser/testing:
Package_ID: a792eaa8ec188d30441564f5ba593ed5b0136807
[options]
shared: False
[settings]
arch: x86
build_type: Debug
compiler: apple-clang
compiler.version: 9.0
os: Macos
outdated from recipe: False
Package_ID: e68b263f26a4d7513e28c9cae1673aa0466af777
[options]
shared: False
[settings]
arch: x86_64
build_type: Debug
compiler: apple-clang
compiler.version: 9.0
os: Macos
outdated from recipe: False
Now, we could add new build configurations, but in this case we only want to add Visual Studio configurations and the runtime, but, of course, only if we are on Windows:
import platform
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager(username="myusername")
if platform.system() == "Windows":
builder.add(settings={"arch": "x86", "build_type": "Debug", "compiler": "Visual Studio", "compiler.version": 14, "compiler.runtime": "MTd"},
options={}, env_vars={}, build_requires={})
builder.add(settings={"arch": "x86_64", "build_type": "Release", "compiler": "Visual Studio", "compiler.version": 14, "compiler.runtime": "MT"},
options={}, env_vars={}, build_requires={})
else:
builder.add(settings={"arch": "x86", "build_type": "Debug"},
options={}, env_vars={}, build_requires={})
builder.add(settings={"arch": "x86_64", "build_type": "Debug"},
options={}, env_vars={}, build_requires={})
builder.run()
In the previous example, when we are on Windows, we are adding two build configurations:
- "Visual Studio 14, Debug, MTd runtime"
- "Visual Studio 14, Release, MT runtime"
We can also adjust the options, environment variables and build_requires:
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager(username="myuser")
builder.add({"arch": "x86", "build_type": "Release"},
{"mypackage:option1": "ON"},
{"PATH": "/path/to/custom"},
{"*": ["MyBuildPackage/1.0@lasote/testing"]})
builder.add({"arch": "x86_64", "build_type": "Release"}, {"mypackage:option1": "ON"})
builder.add({"arch": "x86", "build_type": "Debug"}, {"mypackage:option2": "OFF", "mypackage:shared": True})
builder.run()
We could continue adding configurations, but probably you realized that it would be such a tedious task if you want to generate many different configurations in different operating systems, using different compilers, different compiler versions etc.
Conan package tools can generate automatically a matrix of build configurations combining architecture, compiler, compiler.version, compiler.runtime, compiler.libcxx, build_type and and shared/static options.
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager()
builder.add_common_builds()
builder.run()
If you run the python build.py command, for instance, in Mac OSX, it will add the following configurations automatically:
{'compiler.version': '7.3', 'arch': 'x86', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '7.3', 'arch': 'x86', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '7.3', 'arch': 'x86_64', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '7.3', 'arch': 'x86_64', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '8.0', 'arch': 'x86', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '8.0', 'arch': 'x86', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '8.0', 'arch': 'x86_64', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '8.0', 'arch': 'x86_64', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '8.1', 'arch': 'x86', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '8.1', 'arch': 'x86', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '8.1', 'arch': 'x86_64', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '8.1', 'arch': 'x86_64', 'build_type': 'Debug', 'compiler': 'apple-clang'})
These are all the combinations of arch=x86/x86_64, build_type=Release/Debug for different compiler versions.
But having different apple-clang compiler versions installed in the same machine is not common at all. We can adjust the compiler versions using a parameter or an environment variable, specially useful for a CI environment:
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager(apple_clang_versions=["9.0"]) # or declare env var CONAN_APPLE_CLANG_VERSIONS=9.0
builder.add_common_builds()
builder.run()
In this case, it will call conan create with only this configurations:
{'compiler.version': '9.0', 'arch': 'x86', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '9.0', 'arch': 'x86', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '9.0', 'arch': 'x86_64', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '9.0', 'arch': 'x86_64', 'build_type': 'Debug', 'compiler': 'apple-clang'})
You can adjust other constructor parameters to control the build configurations that will be generated:
Or you can adjust environment variables:
Check the REFERENCE section to see all the parameters and ENVIRONMENT VARIABLES available.
IMPORTANT! Both the constructor parameters and the corresponding environment variables of the previous list ONLY have effect when using builder.add_common_builds().
So, if we want to generate packages for x86_64 and armv8 but only for Debug and apple-clang 9.0:
$ export CONAN_ARCHS=x86_64,armv8
$ export CONAN_APPLE_CLANG_VERSIONS=9.0
$ export CONAN_BUILD_TYPES=Debug
$ python build.py
There are also two additional parameters of the add_common_builds:
libcxx will be applied.
If you don't want libcxx value to apply
to your binary packages you have to use the configure method to remove it: def configure(self):
del self.settings.compiler.libcxx
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager()
builder.add_common_builds(shared_option_name="mypackagename:shared", pure_c=False)
builder.run()
Use the remove_build_if helper with a lambda function to filter configurations:
from cpt.packager import ConanMultiPackager


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是 一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号