This project is no longer maintained, it will not get any fixes or support. It will be soon fully archived. Modern Conan 2.0 extensions can be found in https://github.com/conan-io/conan-extensions
The project Conan Package Tools does not support Conan 2.x and there is no current planned support.
In case you need such support, please, open an issue explaining your current case with more details.
This package allows to automate the creation of conan packages for different configurations.
It eases the integration with CI servers like TravisCI and Appveyor, so you can use the cloud to generate different binary packages for your conan recipe.
Also supports Docker to create packages for different GCC and Clang versions.
$ pip install conan_package_tools
Or you can clone this repository and store its location in PYTHONPATH.
Using only conan C/C++ package manager (without conan package tools), you can use the conan create
command to generate, for the same recipe, different binary packages for different configurations.
The easier way to do it is using profiles:
$ conan create myuser/channel --profile win32
$ conan create myuser/channel --profile raspi
$ ...
The profiles can contain, settings, options, environment variables and build_requires. Take a look to the conan docs to know more.
Conan package tools
allows to declare (or autogenerate) a set of different configurations (different profiles). It will call conan create
for each one, uploading the generated packages
to a remote (if needed), and using optionally docker images to ease the creation of different binaries for different compiler versions (gcc and clang supported).
Create a build.py file in your recipe repository, and add the following lines:
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager(username="myusername")
builder.add(settings={"arch": "x86", "build_type": "Debug"},
options={}, env_vars={}, build_requires={})
builder.add(settings={"arch": "x86_64", "build_type": "Debug"},
options={}, env_vars={}, build_requires={})
builder.run()
Now we can run the python script, the ConanMutiPackager
will run the conan create
command two times, one to generate x86 Debug
package and
another one for x86_64 Debug
.
> python build.py
############## CONAN PACKAGE TOOLS ######################
INFO: ******** RUNNING BUILD **********
conan create myuser/testing --profile /var/folders/y1/9qybgph50sjg_3sm2_ztlm6dr56zsd/T/tmpz83xXmconan_package_tools_profiles/profile
[build_requires]
[settings]
arch=x86
build_type=Debug
[options]
[scopes]
[env]
...
############## CONAN PACKAGE TOOLS ######################
INFO: ******** RUNNING BUILD **********
conan create myuser/testing --profile /var/folders/y1/9qybgph50sjg_3sm2_ztlm6dr56zsd/T/tmpMiqSZUconan_package_tools_profiles/profile
[build_requires]
[settings]
arch=x86_64
build_type=Debug
[options]
[scopes]
[env]
#########################################################
...
If we inspect the local cache we can see that there are two binaries generated for our recipe, in this case the zlib recipe:
$ conan search zlib/1.2.11@myuser/testing
Existing packages for recipe zlib/1.2.11@myuser/testing:
Package_ID: a792eaa8ec188d30441564f5ba593ed5b0136807
[options]
shared: False
[settings]
arch: x86
build_type: Debug
compiler: apple-clang
compiler.version: 9.0
os: Macos
outdated from recipe: False
Package_ID: e68b263f26a4d7513e28c9cae1673aa0466af777
[options]
shared: False
[settings]
arch: x86_64
build_type: Debug
compiler: apple-clang
compiler.version: 9.0
os: Macos
outdated from recipe: False
Now, we could add new build configurations, but in this case we only want to add Visual Studio configurations and the runtime, but, of course, only if we are on Windows:
import platform
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager(username="myusername")
if platform.system() == "Windows":
builder.add(settings={"arch": "x86", "build_type": "Debug", "compiler": "Visual Studio", "compiler.version": 14, "compiler.runtime": "MTd"},
options={}, env_vars={}, build_requires={})
builder.add(settings={"arch": "x86_64", "build_type": "Release", "compiler": "Visual Studio", "compiler.version": 14, "compiler.runtime": "MT"},
options={}, env_vars={}, build_requires={})
else:
builder.add(settings={"arch": "x86", "build_type": "Debug"},
options={}, env_vars={}, build_requires={})
builder.add(settings={"arch": "x86_64", "build_type": "Debug"},
options={}, env_vars={}, build_requires={})
builder.run()
In the previous example, when we are on Windows, we are adding two build configurations:
- "Visual Studio 14, Debug, MTd runtime"
- "Visual Studio 14, Release, MT runtime"
We can also adjust the options, environment variables and build_requires:
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager(username="myuser")
builder.add({"arch": "x86", "build_type": "Release"},
{"mypackage:option1": "ON"},
{"PATH": "/path/to/custom"},
{"*": ["MyBuildPackage/1.0@lasote/testing"]})
builder.add({"arch": "x86_64", "build_type": "Release"}, {"mypackage:option1": "ON"})
builder.add({"arch": "x86", "build_type": "Debug"}, {"mypackage:option2": "OFF", "mypackage:shared": True})
builder.run()
We could continue adding configurations, but probably you realized that it would be such a tedious task if you want to generate many different configurations in different operating systems, using different compilers, different compiler versions etc.
Conan package tools can generate automatically a matrix of build configurations combining architecture, compiler, compiler.version, compiler.runtime, compiler.libcxx, build_type and and shared/static options.
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager()
builder.add_common_builds()
builder.run()
If you run the python build.py
command, for instance, in Mac OSX, it will add the following configurations automatically:
{'compiler.version': '7.3', 'arch': 'x86', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '7.3', 'arch': 'x86', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '7.3', 'arch': 'x86_64', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '7.3', 'arch': 'x86_64', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '8.0', 'arch': 'x86', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '8.0', 'arch': 'x86', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '8.0', 'arch': 'x86_64', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '8.0', 'arch': 'x86_64', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '8.1', 'arch': 'x86', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '8.1', 'arch': 'x86', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '8.1', 'arch': 'x86_64', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '8.1', 'arch': 'x86_64', 'build_type': 'Debug', 'compiler': 'apple-clang'})
These are all the combinations of arch=x86/x86_64, build_type=Release/Debug for different compiler versions.
But having different apple-clang compiler versions installed in the same machine is not common at all. We can adjust the compiler versions using a parameter or an environment variable, specially useful for a CI environment:
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager(apple_clang_versions=["9.0"]) # or declare env var CONAN_APPLE_CLANG_VERSIONS=9.0
builder.add_common_builds()
builder.run()
In this case, it will call conan create
with only this configurations:
{'compiler.version': '9.0', 'arch': 'x86', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '9.0', 'arch': 'x86', 'build_type': 'Debug', 'compiler': 'apple-clang'})
{'compiler.version': '9.0', 'arch': 'x86_64', 'build_type': 'Release', 'compiler': 'apple-clang'})
{'compiler.version': '9.0', 'arch': 'x86_64', 'build_type': 'Debug', 'compiler': 'apple-clang'})
You can adjust other constructor parameters to control the build configurations that will be generated:
Or you can adjust environment variables:
Check the REFERENCE section to see all the parameters and ENVIRONMENT VARIABLES available.
IMPORTANT! Both the constructor parameters and the corresponding environment variables of the previous list ONLY have effect when using builder.add_common_builds()
.
So, if we want to generate packages for x86_64
and armv8
but only for Debug
and apple-clang 9.0
:
$ export CONAN_ARCHS=x86_64,armv8
$ export CONAN_APPLE_CLANG_VERSIONS=9.0
$ export CONAN_BUILD_TYPES=Debug
$ python build.py
There are also two additional parameters of the add_common_builds
:
libcxx
will be applied.
If you don't want libcxx
value to apply
to your binary packages you have to use the configure
method to remove it: def configure(self):
del self.settings.compiler.libcxx
from cpt.packager import ConanMultiPackager
if __name__ == "__main__":
builder = ConanMultiPackager()
builder.add_common_builds(shared_option_name="mypackagename:shared", pure_c=False)
builder.run()
Use the remove_build_if
helper with a lambda function to filter configurations:
from cpt.packager import ConanMultiPackager
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号