
增强Python序列化能力的跨网络工具
cloudpickle是一个扩展Python序列化功能的库,可序列化标准pickle模块不支持的Python构造。它在集群计算环境中尤为有用,能够通过网络将Python代码发送到远程主机执行。支持序列化lambda函数、交互式定义的函数和类等。cloudpickle提供pickle_by_value API,允许用户指定按值序列化的模块,提高分布式环境中的灵活性。需注意,cloudpickle仅适用于相同Python版本环境间传输对象,不支持长期对象存储。
cloudpickle使得序列化Python标准库中默认pickle模块不支持的Python结构成为可能。
cloudpickle对于集群计算特别有用,在这种情况下,Python代码通过网络传送到远程主机上执行,可能靠近数据所在位置。
除此之外,cloudpickle还支持lambda函数以及在__main__模块中交互定义的函数和类的序列化(例如在脚本、shell或Jupyter笔记本中)。
Cloudpickle只能用于在完全相同版本的Python之间传送对象。
不支持且强烈不建议使用cloudpickle进行长期对象存储。
安全提示:应该只加载来自可信源的pickle数据,否则pickle.load可能导致任意代码执行,造成严重的安全漏洞。
cloudpickle的最新版本可以从pypi获取:
pip install cloudpickle
序列化lambda表达式:
>>> import cloudpickle >>> squared = lambda x: x ** 2 >>> pickled_lambda = cloudpickle.dumps(squared) >>> import pickle >>> new_squared = pickle.loads(pickled_lambda) >>> new_squared(2) 4
序列化在Python shell会话中交互定义的函数(在__main__模块中):
>>> CONSTANT = 42 >>> def my_function(data: int) -> int: ... return data + CONSTANT ... >>> pickled_function = cloudpickle.dumps(my_function) >>> depickled_function = pickle.loads(pickled_function) >>> depickled_function <function __main__.my_function(data:int) -> int> >>> depickled_function(43) 85
cloudpickle和pickle之间一个重要的区别是,cloudpickle可以按值序列化函数或类,而pickle只能按引用序列化。按引用序列化将函数和类视为模块的属性,通过在加载时触发其模块导入的指令来序列化它们。因此,按引用序列化受限于假设反序列化环境中包含函数或类的模块可用/可导入。这一假设在序列化交互式会话中定义的结构时会失效,cloudpickle会自动检测这种情况,并按值序列化这些结构。
另一种预期会打破可导入性假设的情况是在分布式执行环境中开发模块时:工作进程可能无法访问该模块,例如,如果它们位于与开发模块的进程不同的机器上。cloudpickle本身无法检测这种"本地可导入"的模块并切换到按值序列化;相反,它依赖于默认模式,即按引用序列化。然而,从cloudpickle 2.0.0版本开始,可以使用register_pickle_by_value(module)/unregister_pickle_by_value(module) API明确指定应该使用按值序列化的模块:
>>> import cloudpickle >>> import my_module >>> cloudpickle.register_pickle_by_value(my_module) >>> cloudpickle.dumps(my_module.my_function) # my_function按值序列化 >>> cloudpickle.unregister_pickle_by_value(my_module) >>> cloudpickle.dumps(my_module.my_function) # my_function按引用序列化
使用此API,无需在所有工作节点上重新安装新版本的模块,也无需重启工作进程:仅重启带有新源代码的客户端Python进程就足够了。
请注意,这个功能仍处于实验阶段,在以下情况下可能会失败:
如果按值序列化的函数/类的主体包含import语句:
>>> def f(): >>> ... from another_module import g >>> ... # 如果反序列化环境中another_module不可用,调用f可能会失败 >>> ... return g() + 1
如果按引用序列化的函数在执行过程中使用了按值序列化的函数。
使用tox,为所有支持的Python和PyPy版本运行测试:
pip install tox
tox
或者针对特定环境:
tox -e py312
使用pytest仅运行当前Python版本的测试:
pip install -r dev-requirements.txt
PYTHONPATH='.:tests' pytest
cloudpickle最初由picloud.com开发,作为客户端SDK的一部分。
cloudpickle.py的副本被包含在PySpark中,即Apache Spark的Python接口。Davies Liu、Josh Rosen、Thom Neale和其他Apache Spark开发者对其进行了显著改进,特别是增加了对PyPy和Python 3的支持。
cloudpickle项目的目标是将这项工作提供给Spark生态系统之外的更广泛受众,并通过专门的非回归测试套件使其更容易进一步改进。


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号