
实现Stable Diffusion模型间潜空间互操作的神经网络
SD-Latent-Interposer是一个实现Stable Diffusion模型间潜空间互操作的神经网络。它支持SDXL、SDv1.5、SD3、Flux.1和Stable Cascade等版本之间的直接潜空间转换,无需通过VAE解码和重新编码。这种方法提高了不同SD模型版本间的兼容性,为潜空间操作提供了更高效、灵活的解决方案。
一个小型神经网络,用于提供不同Stable Diffusion模型生成的潜空间之间的互操作性。
我想看看是否可以将新的SDXL模型生成的潜空间直接传递到SDv1.5模型中,而无需先使用VAE解码和重新编码。
要安装它,只需使用以下命令将此仓库克隆到您的custom_nodes文件夹中:
git clone https://github.com/city96/SD-Latent-Interposer custom_nodes/SD-Latent-Interposer
或者,您也可以将comfy_latent_interposer.py文件下载到您的ComfyUI/custom_nodes文件夹中。您可能需要在venv中使用pip install huggingface-hub命令安装hfhub。
如果您需要用于其他用途的模型权重,它们以与仓库其余部分相同的Apache2许可证托管在HF上。当前文件位于**"v4.0"**子文件夹中。
只需将其放置在通常放置VAE解码后跟VAE编码的位置。适当设置去噪以隐藏任何伪影,同时保持构图。请参见下图。
没有插值器,两个潜空间是不兼容的:
默认情况下,节点从huggingface hub拉取所需文件。如果您的连接不稳定或更喜欢完全离线使用,可以创建一个models文件夹并将模型放在那里。当有本地文件时,自定义节点会优先使用本地文件而不是HF。路径应为:ComfyUI/custom_nodes/SD-Latent-Interposer/models
或者,只 需将整个HF仓库克隆到该位置:
git clone https://huggingface.co/city96/SD-Latent-Interposer custom_nodes/SD-Latent-Interposer/models
模型名称:
| 代码 | 名称 |
|---|---|
v1 | Stable Diffusion v1.x |
xl | SDXL |
v3 | Stable Diffusion 3 |
fx | Flux.1 |
ca | Stable Cascade (Stage A/B) |
可用模型:
| 从 | 到 v1 | 到 xl | 到 v3 | 到 fx | 到 ca |
|---|---|---|---|---|---|
v1 | - | v4.0 | v4.0 | 否 | 否 |
xl | v4.0 | - | v4.0 | 否 | 否 |
v3 | v4.0 | v4.0 | - | 否 | 否 |
fx | v4.0 | v4.0 | v4.0 | - | 否 |
ca | v4.0 | v4.0 | v4.0 | 否 | - |
训练代码从提供的配置文件初始化大多数训练参数。数据集应该是使用torch.save为每个潜空间版本保存的单个.bin文件。格式应为[批次,通道,高度,宽度],其中"批次"应尽可能大,例如88000。
当前的训练代码初始化模型的两个副本,一个在目标方向,一个在相反方向。损失函数基于此定义。
p_loss是主要模型的主要标准。b_loss是次要模型的主要标准。r_loss是主要模型的输出通过次要模型后与源潜空间进行比较(基本上是通过两个模型的往返)。h_loss与r_loss相同,但适用于次要模型。所有模型都训练了50000步,批量大小为128(xl/v1)或48(cascade)。 训练在RTX 3080和Tesla V100S上本地完成。
这基本上是一次完全重写。用更像是一个适当的神经网络的东西替换了平庸的一堆conv2d层。没有VGG损失,因为我仍然没有更好的GPU。
训练是在合并的Flickr2K + DIV2K上进行的,每张图像被处理成6个1024x1024的片段。用我的一些随机图像填充,数据集中总共有22,000张源图像。
我认为我已经去除了大部分XL伪影,但颜色/色调/饱和度偏移问题仍然存在。这次我实际上保存了优化器状态,所以我可能能够在我的P40上进行100K步的视觉损失训练。希望它们不会烧坏。
v3.0是以1e-4的恒定学习率进行了500k步,v3.1是使用CosineAnnealingLR在结束时降低学习率,进行了1M步。两者都使用了AdamW。
这是使用"spaceship"架构的第二个版本。它在Flickr2K数据集上训练,并从v1.0检查点继续训练。 总的来说,它似乎表现得更好,特别是对于真实生活照片。我还调查了奇怪的v1->xl伪影,但最终似乎这是VAE解码器阶段固有的问题。
不确定为什么训练损失如此不同,可能是由于我用来训练它的1000张来自我的下载文件夹的随机图像组成的"""高度策划的"""数据集。
我可能应该直接使用LAION。
我还训练了一个v1到v2的模式,然后才意识到v1和v2共享相同的潜空间。哎呀。


职场AI,就用扣子
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!


多风格AI绘画神器
堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。


零代码AI应用开发平台
零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣 效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。
最新AI工具、AI资讯
独家AI资源、AI项目落地

微信扫一扫关注公众号