concourse

concourse

实时交易搜索和分析的分布式数据仓库系统

Concourse是一款分布式数据仓库系统,专注于实时交易搜索和跨时间分析。该系统简化了关键系统的构建流程,提供即时数据分析能力,无需额外基础设施和复杂配置。Concourse具备自动索引、版本控制、ACID事务和全文搜索等功能,其灵活的文档图结构适应多种数据类型和大规模应用场景。这一高效的数据管理解决方案使开发团队能够更专注于核心业务问题。

Concourse分布式数据库事务处理搜索分析数据管理Github开源项目

Concourse

Join the chat at https://gitter.im/cinchapi/concourse

Concourse is a distributed database warehouse for transactions search and analytics across time. Developers prefer Concourse because it simplifies building misssion-critical systems with on-demand data intelligence. Furthermore, Concourse makes end-to-end data management trivial by requiring no extra infrastructure, no prior configuration and no continuous tuning–all of which greatly reduce costs, and allow developers to focus on core business problems.

This is version 0.12.0 of Concourse.

Quickstart

Docker

Using Concourse via Docker is the quickest way to get started.

Run concourse

docker run -p 1717:1717 --name concourse cinchapi/concourse

NOTE: This will run Concourse in the foreground. To run in the background, add a -d flag to the docker run command.

Run concourse with a peristent/shared directory

docker run -p 1717:1717 -v </path/to/local/data>:/data --name concourse cinchapi/concourse

Run concourse with a custom HEAP_SIZE

docker run -p 1717:1717 -e CONCOURSE_HEAP_SIZE=<HEAP_SIZE> --name concourse cinchapi/concourse

Run concourse shell and connect to the running concourse docker container

docker run -it --rm --link concourse:concourse cinchapi/concourse shell --host concourse --password admin

Run concourse shell and connect to a running concourse container spun up using docker-compose

docker-compose run concourse shell --host concourse

Use the concourse import to perform an interactive import that reads input from the command line

docker run -it --rm --link concourse:concourse cinchapi/concourse import --host concourse --password admin

Use the concourse import to import a file from the host machine into the concourse docker container

xargs -I % docker run -i --rm --link concourse:concourse --mount type=bind,source=%,target=/data/% cinchapi/concourse import --host concourse --password admin -d /data/% <<< /absolute/path/to/file

Run server-side management commands (e.g. concourse debug) within the running container

docker exec -it concourse concourse <command> <args>

For example, you can call the concourse users sessions command

docker exec -it concourse concourse users sessions --password admin

For more information, visit https://docs.cinchapi.com/concourse/quickstart.

Usage

Let's assume we have the an array of JSON objects corresponding to NBA players. NOTE: These examples assume you're using Concourse Shell, but are easily adaptable to any of the Concourse client drivers or REST API.

data = '[ { "name": "Lebron James", "age": 30, "team": "Cleveland Cavaliers" }, { "name": "Kevin Durant", "age": 26, "team": "OKC Thunder" }, { "name": "Kobe Bryant", "age": 36, "team": "LA Lakers" } ]'
You can use Concourse to quickly insert the data and do some quick analysis. Notice that we don't have to declare a schema, create any structure or configure any indexes.
ids = insert(data) // each object is added to a distinct record lebron = ids[0] durant = ids[1] kobe = ids[2]
You can read and modify individual attributes without loading the entire record.
get(key="age", record=kobe) add(key="name", value="KD", record=durant) remove(key="jersey_number", value=23, record=lebron)
You can easily find records that match a criteria and select the desired since everything is automatically indexed.
select(criteria="team = Chicago Bulls") select(keys=["name", "team"], criteria="age bw 22 29")
You can even query data from the past without doing any extra work.
// Return data from 04/2009 from records that match now get(key="age", record=durant, time=time("04/2009")) // Return records that matched in 2011 find("team = Chicago Bulls at 2011") // Return data from two years ago from records that match now select(criteria="age > 25 and team != Chicago Bulls", time=time("two years ago"))
It is very easy to analyze how data has changed over time and revert to previous states.
// Analyze how data has changed over time and revert to previous states audit(key="team", record=lebron) revert(key="jersey_number", record=kobe, time=time("two years ago"))
And ACID transactions are available for important, cross record changes.
stage set(key="current_team", value="OKC Thunder", record=lebron) set(key="current_team", value="Cleveland Cavs", record=durant) commit

...or using shorthand syntax

stage({ set(key="current_team", value="OKC Thunder", record=lebron); set(key="current_team", value="Cleveland Cavs", record=durant); })

You can find more examples in the examples directory. More information is also available in the Concourse Guide.

Motivation

Whether you use SQL or NoSQL, it's hard to get real-time insight into your mission critical data because most systems are only optimized for either transactions or analytics, not both. As a result, end-to-end data management requires complex data pipelining, which slows down development, complicates infrastructure and increases costs.

The Solution

Concourse is an integrated and self-managing transactional database that enables real time ad-hoc analytics without any configuration.

Automatic Indexing

You no longer need to plan queries in advance because Concourse automatically indexes all of your data while guaranteeing constant time writes that are super fast. Concourse fully supports ad-hoc range and predicate queries and automatically caches frequently requested data for optimal performance.

Version Control

Concourse automatically tracks changes to your data, just like Git does for source code. Of course this means that you can easily audit changes and revert to previous states without downtime; but it also means that you have the power to query data from the past. Version control in Concourse makes it possible to build applications that know what was known when and can analyze real-time changes over time.

ACID Transactions

Concourse supports truly distributed ACID transactions without restriction. And we use dynamic resource management with just-in-time locking to ensure that they deliver both the highest performance and strongest consistency. So no need to guess when your data will eventually become consistent. When distributed Concourse responds to a query, you can trust the results immediately.

Simple Data Model

Concourse's document-graph structure is lightweight and flexible–it supports any kind of data and very large scales. Data about each person, place or thing is stored in a record, which is simply a collection of key/value pairs. And you can create links among records to easily model all the relationships within your data.

Schemaless

Since Concourse makes very few assumptions about data, it integrates with your application seamlessly and never needs a translator (goodbye object-relational impedance mismatch)! You never have to declare structure up front–no schema, tables, or indexes–or specify value types because Concourse is smart enough to figure it out. Concourse dynamically adapts to your application so that you can focus on building value without having to drag the database along.

Search

Concourse supports rich full text search right out the box, so you don't need to deploy an external search server. Data is automatically indexed and searchable in real-time without ever diminishing write performance. In Concourse, you can always perform as-you-type searches that match full or partial terms.

Overview

System Requirements
  • At least 256 MB of available memory
  • Linux or OS X
  • Java 1.8+
Versioning

Concourse will be maintained under the Semantic Versioning guidelines such that release versions will be formatted as <major>.<minor>.<patch> where

  • breaking backward compatibility bumps the major,
  • new additions while maintaining backward compatibility bumps the minor, and
  • bug fixes or miscellaneous changes bumps the patch.
Additional Resources

Contributing

Read the contributing guidelines to learn how to get involved in the community. We value and welcome constructive contributions from anyone, regardless of skill level :)

Mailing Lists

Credits

Author
License

Copyright © 2013-2024 Cinchapi Inc.

Concourse is released under the Apache License, Version 2.0. For more information see LICENSE, which is included with this package.

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多