Text2Poster-ICASSP-22

Text2Poster-ICASSP-22

基于AI的智能海报布局生成系统

Text2Poster-ICASSP-22是一个基于人工智能的海报生成系统,结合了图像检索和文本布局技术。该项目能够根据输入文本自动选择合适的背景图片并进行智能排版,支持多语言输入。系统提供API接口,便于快速集成和使用。Text2Poster适用于各种需要快速生成高质量海报的场景,如活动宣传、营销推广等。

Text2Poster图文布局海报生成背景图像检索AI应用Github开源项目

Text2Poster-ICASSP-22

The inference code of the ICASSP-2022 paper "Text2Poster: Laying Out Stylized Texts on Retrieved Images".

framework

Paper Link: https://arxiv.org/abs/2301.02363

Star History

Star History Chart

If you like this project, please give it a star! It would be a great encouragement for me and help me to continue improving it.

Quick Start from API

Just run the following code to quick start:

import time, json, requests timestamp = time.strftime('%Y%m%d%H%M%S',time.localtime(time.time())) input_text_elements = { "sentences": [ ["CHILDREN'S DAY", 90], # [text, font_size] ["Children are The Future of Nation", 50] # [text, font_size] ], "background_query": "Children's Day!" # sentence used to retrieve background images. } input_text_elements = json.dumps(input_text_elements) api_url = "http://bl.mmd.ac.cn:8889/text2poster" response = requests.get(api_url, params = {"input_text_elements": input_text_elements}) if response.status_code == 200: f = open("poster-{}.jpg".format(timestamp), "wb") f.write(response.content) f.close() print("Save poster to:", "poster-{}.jpg".format(timestamp)) else: print(response.text)

News

  • [2023.1.24] Update "http://1.13.255.9" to "http://bl.mmd.ac.cn".
  • [2023.1.17] We provide an API for Text2Poster, you can quickly start our Text2Poster without any resource download.
  • [2023.1.16] We add a machine translation API to translate all the input texts into Chinese. So that the BriVL model could deal with all languages. Now you can try to retrieve background images in any language!!
  • [2023.1.15] We provide an unsplash image download script in ./background_retriever/unsplash_image_downloader.py, you can use this script to get those background image files based on the retrieved image urls.
  • [2023.1.14] We provide our image retrieval source code and data in ./background_retriever for the convenience of people who are not in mainland China to use our Text2Poster. You can retrieve the background image locally, which requires about 3GB of GPU memory.
  • [2023.01.10] We update the background image retrieval website to http://1.13.255.9:8889. The original website buling.wudaoai.cn has been retired in 2023.01.09.

Generated Posters:

<img src="./poster-20230117000304.jpg" alt="poster" height="260"/> <img src="./poster-20230117002210.jpg" alt="poster" height="260"/>

More Examples

  • input text elements 1

55, 40 and 30 are the font size.

{ "sentences": [ ["冬日初雪舞会", 55], ["雪花飞舞,像音乐和歌声围绕", 40], ["与朋友相聚,享受欢乐时光,我们不见不散", 30] ], "background_query": "冬日初雪舞会" }
  • output posters

<img src="./example/outputs_1/0/poster.jpg" alt="poster" height="250" /> <img src="./example/outputs_1/1/poster.jpg" alt="poster" height="250" />

  • input text elements 2

80 and 55 are the font size.

{ "sentences": [ ["ICASSP 2022", 80], ["May 22 - 27, 2022, Singapore", 55] ], "background_query": "Singapore" }

output posters

<img src="./example/outputs_2/1/poster.jpg" alt="poster" height="250" /> <img src="./example/outputs_2/2/poster.jpg" alt="poster" height="250" />

  • input text elements 3

90 and 50 are the font size.

{ "sentences": [ ["桜が咲く", 90], ["出会いは素晴らしい春に", 50] ], "background_query": "春の美しい桜" }

output posters

<img src="./example/outputs_3/3/poster.jpg" alt="poster" height="260" /> <img src="./example/outputs_3/1/poster.jpg" alt="poster" height="260" />

Start from Source Code

Install

We recommend you use anaconda to run our Text2Poster. Run the following command to install the dependent libraries:

bash install_package.sh

you also can install the dependent libraries manually:

# using the tsinghua mirror to speed up the install. conda install pytorch=1.10.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ conda install torchvision=0.11.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ pip install opencv_contrib_python pip install transformers==3.2.0 pip install argparse pip install freetype-py pip install requests pip install jsonlines pip install tqdm pip install pyyaml pip install easydict pip install timm

Download

We provide the following resource to start Text2Poster:

  • Weights of layout refine model: ./checkpoint/0.20484_Cascading_128_uniform_big.pth;
  • Weights of layout distribution prediction model: ./checkpoint/27.80619_distribCNN_BigPosition_epoch_76_scale_20.pth;

[Not required] Although we provide an API for background image retrieval, if you want to retrieve background images from the source code, you need to download the following resources:

  • Weights of text encoder of BriVL: brivl-textencoder-weights.pth -> ./background_retriever/weights/;
  • Unsplash images features (extracted by BriVL): wenlan_unsplash_feats.npy -> ./background_retriever/background_feats/;
  • URL of background images: ./background_retriever/background_feats/unsplash_image_url.jsonl.

Running

We provide two example, Run the following command to run our Text2Poster:

bash run.sh

Some parameters:

  • input_text_file: The input text elements, it contains: 1). sentences (phase) and their font size, 2). query used to retrieve background images.
  • output_folder: The folder to save the output posters and some process figures.
  • background_folder: The folder to save local background images, If images are not saved locally, they will be downloaded from remote.
  • top_n: Arrange the text elements on the top N retrieved images.
  • save_process: Save the process figure (etc. saliency map) or not.

We also provide the following examples:

  • background image retrieval (from API)
python background_retrieval.py
  • background image retrieval (from source code)
cd background_retriever python main.py
  • Layout distribution prediction
python layout_distribution_predict.py
  • Layout refinement
python layout_refine.py
  • Download images from Unsplash
python ./background_retriever/unsplash_image_downloader.py

Some Output During Process

we also output some intermediate processing files in ./example/outputs:

<img src="./bk_image_folder/-SdD0KbD7N0.png" alt="-SdD0KbD7N0" height="250" /> <img src="./example/outputs_1/0/saliency_map_with-smooth.jpg" alt="saliency_map_with-smooth" height="250" />

  • Right image: The original background image.
  • Left image: Saliency map (blue) with smooth region map (red).

<img src="./example/outputs_1/0/layout_distribution.jpg" alt="layout_distribution" height="250" /> <img src="./example/outputs_1/0/saliency_map_with-layout-distribution.jpg" alt="saliency_map_with-smooth" height="250" />

  • Right image: The prediction of layout distribution map.
  • Left image: Saliency map (blue) with predicted layout distribution map (red).

<img src="./example/outputs_1/0/initial_layout.jpg" alt="initial_layout" height="250" /> <img src="./example/outputs_1/0/refined_layout.jpg" alt="refined_layout" height="250" />

  • Right image: Initial layout map.
  • Left image: Refined layout map.

Blue region: The saliency map;

Green region: The predicted layout distribution map;

Red region: the predicted layout map.

Tips

Something about our background image retrieval

Requirements

python==3.7
pytorch=1.10.0
torchvision=0.11.0
transformers==3.2.0
freetype-py
opencv_contrib_python
requests
jsonlines
tqdm
argparse
pyyaml
easydict
timm

Citation

If you find this paper and repo useful, please cite us in your work:

@inproceedings{DBLP:conf/icassp/JinXSL22, author = {Chuhao Jin and Hongteng Xu and Ruihua Song and Zhiwu Lu}, title = {Text2Poster: Laying Out Stylized Texts on Retrieved Images}, booktitle = {{IEEE} International Conference on Acoustics, Speech and Signal Processing, {ICASSP} 2022, Virtual and Singapore, 23-27 May 2022}, pages = {4823--4827}, publisher = {{IEEE}}, year = {2022}, url = {https://doi.org/10.1109/ICASSP43922.2022.9747465}, doi = {10.1109/ICASSP43922.2022.9747465}, timestamp = {Tue, 07 Jun 2022 17:34:56 +0200}, biburl = {https://dblp.org/rec/conf/icassp/JinXSL22.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} }

Contact

My Email is: jinchuhao@ruc.edu.cn

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具使用教程AI营销产品酷表ChatExcelAI智能客服
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

热门AI工具生产力协作转型TraeAI IDE
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

数据安全AI助手热门AI工具AI辅助写作AI论文工具论文写作智能生成大纲
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

热门AI工具AI办公办公工具智能排版AI生成PPT博思AIPPT海量精品模板AI创作
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多