Zennit(Zennit explains neural networks in torch)是一个使用 Pytorch 的 Python 高级框架,用于解释/探索神经网络。其设计理念旨在为研究中应用基于规则的归因方法提供高度可定制性和集成性的标准化解决方案,重点关注分层相关性传播(LRP)。Zennit 严格要求模型使用 Pytorch 的 torch.nn.Module
结构(包括激活函数)。
Zennit 目前正在积极开发中,但应该已经相当稳定。
如果您发现 Zennit 对您的研究有用,请考虑引用我们相关的论文:
@article{anders2021software,
author = {Anders, Christopher J. and
Neumann, David and
Samek, Wojciech and
Müller, Klaus-Robert and
Lapuschkin, Sebastian},
title = {Software for Dataset-wide XAI: From Local Explanations to Global Insights with {Zennit}, {CoRelAy}, and {ViRelAy}},
journal = {CoRR},
volume = {abs/2106.13200},
year = {2021},
}
最新文档托管在 zennit.readthedocs.io。
要直接从 PyPI 使用 pip 安装,请使用:
$ pip install zennit
或者,从手动克隆的仓库安装以尝试示例:
$ git clone https://github.com/chr5tphr/zennit.git $ pip install ./zennit
Zennit 的核心是在 Pytorch 的 Module 级别注册钩子,以修改反向传播过程,产生基于规则的归因(如 LRP),而不是通常的梯度。所有规则都作为钩子实现(zennit/rules.py
),大多数使用 LRP 基础 BasicHook
(zennit/core.py
)。
Composites(zennit/composites.py
)是为正确的层选择正确钩子的方法。除了抽象的 NameMapComposite(根据名称为层分配钩子)和 LayerMapComposite(根据类型为层分配钩子)外,还有明确的 Composites,如 EpsilonGammaBox
(输入使用 ZBox
,密集层使用 Epsilon
,卷积层使用 Gamma
)或 EpsilonPlus
(密集层使用 Epsilon
,卷积层使用 ZPlus
)。所有 composites 都可以直接从 zennit.composites
导入,或使用它们的蛇形命名作为 zennit.composites.COMPOSITES
的键。
Canonizers(zennit/canonizers.py
)临时将模型转换为规范形式(如果需要),例如 SequentialMergeBatchNorm
自动检测并合并顺序网络中批量归一化层后跟的线性层,或 AttributeCanonizer
临时覆盖适用模块的属性,例如处理 ResNet-Bottleneck 模块中的残差连接。
Attributors(zennit/attribution.py
)直接执行应用某些归因方法所需的步骤,如简单的 Gradient
、SmoothGrad
或 Occlusion
。可以传递可选的 Composite,在 Attributor 执行期间应用它来计算修改后的梯度或混合方法。
使用所有这些组件,可以使用以下代码计算带有批量归一化层的 VGG16 相对于标签 0 的 LRP 类归因:
import torch from torchvision.models import vgg16_bn from zennit.composites import EpsilonGammaBox from zennit.canonizers import SequentialMergeBatchNorm from zennit.attribution import Gradient data = torch.randn(1, 3, 224, 224) model = vgg16_bn() canonizers = [SequentialMergeBatchNorm()] composite = EpsilonGammaBox(low=-3., high=3., canonizers=canonizers) with Gradient(model=model, composite=composite) as attributor: out, relevance = attributor(data, torch.eye(1000)[[0]])
使用示例脚本的类似设置会产生以下归因热图:
有关更多详细信息和示例,请查看我们的文档。
使用 share/example/feed_forward.py
生成的 VGG16 和 ResNet50 的各种归因方法的更多热图可以在下面找到。
有关如何贡献的详细说明,请参阅 CONTRIBUTING.md。
Zennit 根据 GNU 宽松通用公共许可证第 3 版或更高版本授权 -- 详见 LICENSE、COPYING 和 COPYING.LESSER 文件。
字节跳动发布的AI编程神器IDE
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。
AI助力,做PPT更简单!
咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。
选题、配图、成文,一站式创作,让内容运营更高效
讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。
专业的AI公文写作平台,公文写作神器
AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。
OpenAI Agents SDK,助力开发者便捷使用 OpenAI 相关功能。
openai-agents-python 是 OpenAI 推出的一款强大 Python SDK,它为开发者提供了与 OpenAI 模型交互的高效工具,支持工具调用、结果处理、追踪等功能,涵盖多种应用场景,如研究助手、财务研究等,能显著提升开发效率,让开发者更轻松地利用 OpenAI 的技术优势。
最新AI工具、AI资讯
独家AI资源、AI项目落地
微信扫一扫关注公众号