Safe-Reinforcement-Learning-Baselines

Safe-Reinforcement-Learning-Baselines

综合安全强化学习研究资源库

Safe-Reinforcement-Learning-Baselines项目汇集了安全强化学习领域的多种基线算法和基准环境,涵盖单智能体和多智能体场景。该资源库提供环境支持、算法实现、相关调查、学术论文和教程等全面内容,为研究人员提供系统性的安全强化学习工具和参考资料,促进该领域的持续发展和创新。

Safe Reinforcement Learning安全强化学习基准测试算法环境Github开源项目

Safe-Reinforcement-Learning-Baselines

The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baselines and safe RL benchmarks, including single agent RL and multi-agent RL. If any authors do not want their paper to be listed here, please feel free to contact <gshangd[AT]foxmail.com>. (This repository is under actively development. We appreciate any constructive comments and suggestions)

You are more than welcome to update this list! If you find a paper about Safe RL which is not listed here, please

  • fork this repository, add it and merge back;
  • or report an issue here;
  • or email <gshangd[AT]foxmail.com>.

The README is organized as follows:


1. Environments Supported

1.1. Safe Single Agent RL benchmarks

1.2. Safe Multi-Agent RL benchmarks

2. Safe RL Baselines

2.1. Safe Single Agent RL Baselines

  • Consideration of risk in reinforcement learning, Paper, Not Find Code, (Accepted by ICML 1994)
  • Multi-criteria Reinforcement Learning, Paper, Not Find Code, (Accepted by ICML 1998)
  • Lyapunov design for safe reinforcement learning, Paper, Not Find Code, (Accepted by ICML 2002)
  • Risk-sensitive reinforcement learning, Paper, Not Find Code, (Accepted by Machine Learning, 2002)
  • Risk-Sensitive Reinforcement Learning Applied to Control under Constraints, Paper, Not Find Code, (Accepted by Journal of Artificial Intelligence Research, 2005)
  • An actor-critic algorithm for constrained markov decision processes, Paper, Not Find Code, (Accepted by Systems & Control Letters, 2005)
  • Reinforcement learning for MDPs with constraints, Paper, Not Find Code, (Accepted by European Conference on Machine Learning 2006)
  • Discounted Markov decision processes with utility constraints, Paper, Not Find Code, (Accepted by Computers & Mathematics with Applications, 2006)
  • Constrained reinforcement learning from intrinsic and extrinsic rewards, Paper, Not Find Code, (Accepted by International Conference on Development and Learning 2007)
  • Safe exploration for reinforcement learning, Paper, Not Find Code, (Accepted by ESANN 2008)
  • Percentile optimization for Markov decision processes with parameter uncertainty, Paper, Not Find Code, (Accepted by Operations research, 2010)
  • Probabilistic goal Markov decision processes, Paper, Not Find Code, (Accepted by IJCAI 2011)
  • Safe reinforcement learning in high-risk tasks through policy improvement, Paper, Not Find Code, (Accepted by IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL) 2011)
  • Safe Exploration in Markov Decision Processes, Paper, Not Find Code, (Accepted by ICML 2012)
  • Policy gradients with variance related risk criteria, Paper, Not Find Code, (Accepted by ICML 2012)
  • Risk aversion in Markov decision processes via near optimal Chernoff bounds, Paper, Not Find Code, (Accepted by NeurIPS 2012)
  • Safe Exploration of State and Action Spaces in Reinforcement Learning, Paper, Not Find Code, (Accepted by Journal of Artificial Intelligence Research, 2012)
  • An Online Actor–Critic Algorithm with Function Approximation for Constrained Markov Decision Processes, Paper, Not Find Code, (Accepted by Journal of Optimization Theory and Applications, 2012)
  • Safe policy iteration, Paper, Not Find Code, (Accepted by ICML 2013)
  • Reachability-based safe learning with Gaussian processes, Paper, Not Find Code (Accepted by IEEE CDC 2014)
  • Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret, Paper, Not Find Code, (Accepted by ICML 2015)
  • High-Confidence Off-Policy Evaluation, Paper, Code (Accepted by AAAI 2015)
  • Safe Exploration for Optimization with Gaussian Processes, Paper, Not Find Code (Accepted by ICML 2015)
  • Safe Exploration in Finite Markov Decision Processes with Gaussian Processes, Paper, Not Find Code (Accepted by NeurIPS 2016)
  • Safe and efficient off-policy reinforcement learning, Paper, Code (Accepted by NeurIPS 2016)
  • Safe, Multi-Agent, Reinforcement Learning for Autonomous Driving, Paper, Not Find Code (only Arxiv, 2016, citation 530+)
  • Safe Learning of Regions of Attraction in Uncertain, Nonlinear Systems with Gaussian Processes, Paper, Code (Accepetd by CDC 2016)
  • Safety-constrained reinforcement learning for MDPs, Paper, Not Find Code (Accepted by InInternational Conference on Tools and Algorithms for the Construction and Analysis of Systems 2016)
  • Convex synthesis of randomized policies for controlled Markov chains with density safety upper bound constraints, Paper, Not Find Code (Accepted by American Control Conference 2016)
  • Combating Deep Reinforcement Learning's Sisyphean Curse with Intrinsic Fear, Paper, Not Find Code (only Openreview, 2016)
  • Combating reinforcement learning's sisyphean curse with intrinsic fear, Paper, Not Find Code (only Arxiv, 2016)
  • Constrained Policy Optimization (CPO), Paper, Code (Accepted by ICML 2017)
  • Risk-constrained reinforcement learning with percentile risk criteria, Paper, , Not Find Code (Accepted by The Journal of Machine Learning Research, 2017)
  • Probabilistically Safe Policy Transfer, Paper, Not Find Code (Accepted by ICRA 2017)
  • Accelerated primal-dual policy optimization for safe reinforcement learning, Paper, Not Find Code (Arxiv, 2017)
  • Stagewise safe bayesian optimization with gaussian processes, Paper, Not Find Code (Accepted by ICML 2018)
  • Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning, Paper, Code (Accepted by ICLR 2018)
  • Safe Model-based Reinforcement Learning with Stability Guarantees, Paper, Code (Accepted by NeurIPS 2018)
  • A Lyapunov-based Approach to Safe Reinforcement Learning, Paper, Not Find Code (Accepted by NeurIPS 2018)
  • Constrained Cross-Entropy Method for Safe Reinforcement Learning, Paper, Not Find Code (Accepted by NeurIPS 2018)
  • Safe Reinforcement Learning via Formal Methods, Paper, Not Find Code (Accepted by AAAI 2018)
  • Safe exploration and optimization of constrained mdps using gaussian processes, Paper, Not Find Code (Accepted by AAAI 2018)
  • Safe reinforcement learning via shielding, Paper, Code (Accepted by AAAI 2018)
  • Trial without Error: Towards Safe Reinforcement Learning via Human Intervention, Paper, Not Find Code (Accepted by AAMAS 2018)
  • Learning-based Model Predictive Control for Safe Exploration and Reinforcement Learning, Paper, Not Find Code (Accepted by CDC 2018)
  • The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamical Systems, Paper, Code (Accepted by CoRL 2018)
  • OptLayer - Practical Constrained Optimization for Deep Reinforcement Learning in the Real World, Paper, Not Find Code (Accepted by ICRA 2018)
  • Safe learning of quadrotor dynamics using barrier certificates, Paper, Not Find Code (Accepted by ICRA 2018)
  • Safe reinforcement learning on autonomous vehicles, Paper, Not Find Code (Accepted by IROS 2018)
  • Trial without error: Towards safe reinforcement learning via human intervention, Paper, Code (Accepted by AAMAS 2018)
  • Safe reinforcement learning: Learning with supervision using a constraint-admissible set, Paper, Not Find Code (Accepted by Annual American Control Conference (ACC) 2018)
  • A General Safety Framework for Learning-Based Control in Uncertain Robotic Systems, Paper, Not Find Code (Accepted by IEEE Transactions on Automatic Control 2018)
  • Safe exploration algorithms for reinforcement learning controllers, Paper, Not Find Code (Accepted by IEEE transactions on neural networks and learning systems 2018)
  • Verification and repair of control policies for safe reinforcement learning, Paper, Not Find Code (Accepted by Applied Intelligence, 2018)
  • Safe Exploration in Continuous Action Spaces, Paper, Code, (only Arxiv, 2018, citation 200+)
  • Safe exploration of nonlinear dynamical systems: A predictive safety filter for reinforcement learning, Paper, Not Find Code

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
商汤小浣熊

商汤小浣熊

最强AI数据分析助手

小浣熊家族Raccoon,您的AI智能助手,致力于通过先进的人工智能技术,为用户提供高效、便捷的智能服务。无论是日常咨询还是专业问题解答,小浣熊都能以快速、准确的响应满足您的需求,让您的生活更加智能便捷。

imini AI

imini AI

像人一样思考的AI智能体

imini 是一款超级AI智能体,能根据人类指令,自主思考、自主完成、并且交付结果的AI智能体。

Keevx

Keevx

AI数字人视频创作平台

Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。

即梦AI

即梦AI

一站式AI创作平台

提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作

扣子-AI办公

扣子-AI办公

AI办公助手,复杂任务高效处理

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
下拉加载更多