Anserini is a toolkit for reproducible information retrieval research. By building on Lucene, we aim to bridge the gap between academic information retrieval research and the practice of building real-world search applications. Among other goals, our effort aims to be the opposite of this.* Anserini grew out of a reproducibility study of various open-source retrieval engines in 2016 (Lin et al., ECIR 2016). See Yang et al. (SIGIR 2017) and Yang et al. (JDIQ 2018) for overviews.
❗ Anserini was upgraded from JDK 11 to JDK 21 at commit 272565 (2024/04/03), which corresponds to the release of v0.35.0.
Anserini is packaged in a self-contained fatjar, which also provides the simplest way to get started. Assuming you've already got Java installed, fetch the fatjar:
wget https://repo1.maven.org/maven2/io/anserini/anserini/0.36.1/anserini-0.36.1-fatjar.jar
The follow commands will generate a SPLADE++ ED run with the dev queries (encoded using ONNX) on the MS MARCO passage corpus:
java -cp anserini-0.36.1-fatjar.jar io.anserini.search.SearchCollection \ -index msmarco-v1-passage.splade-pp-ed \ -topics msmarco-v1-passage.dev \ -encoder SpladePlusPlusEnsembleDistil \ -output run.msmarco-v1-passage-dev.splade-pp-ed-onnx.txt \ -impact -pretokenized
To evaluate:
java -cp anserini-0.36.1-fatjar.jar trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset run.msmarco-v1-passage-dev.splade-pp-ed-onnx.txt
See detailed instructions for the current fatjar release of Anserini (v0.36.1) to reproduce regression experiments on the MS MARCO V2.1 corpora for TREC 2024 RAG, on MS MARCO V1 Passage, and on BEIR, all directly from the fatjar!
<!-- We also have [forthcoming instructions](docs/fatjar-regressions/fatjar-regressions-v0.36.2-SNAPSHOT.md) for the next release (v0.36.2-SNAPSHOT) if you're interested. --> <details> <summary>Older instructions</summary> </details>Most Anserini features are exposed in the Pyserini Python interface. If you're more comfortable with Python, start there, although Anserini forms an important building block of Pyserini, so it remains worthwhile to learn about Anserini.
You'll need Java 21 and Maven 3.9+ to build Anserini.
Clone our repo with the --recurse-submodules option to make sure the eval/ submodule also gets cloned (alternatively, use git submodule update --init).
Then, build using Maven:
mvn clean package
The tools/ directory, which contains evaluation tools and other scripts, is actually this repo, integrated as a Git submodule (so that it can be shared across related projects).
Build as follows (you might get warnings, but okay to ignore):
cd tools/eval && tar xvfz trec_eval.9.0.4.tar.gz && cd trec_eval.9.0.4 && make && cd ../../.. cd tools/eval/ndeval && make && cd ../../..
With that, you should be ready to go. The onboarding path for Anserini starts here!
<details> <summary>Windows tips</summary>If you are using Windows, please use WSL2 to build Anserini. Please refer to the WSL2 Installation document to install WSL2 if you haven't already.
Note that on Windows without WSL2, tests may fail due to encoding issues, see #1466.
A simple workaround is to skip tests by adding -Dmaven.test.skip=true to the above mvn command.
See #1121 for additional discussions on debugging Windows build errors.
Anserini is designed to support end-to-end experiments on various standard IR test collections out of the box. Each of these end-to-end regressions starts from the raw corpus, builds the necessary index, performs retrieval runs, and generates evaluation results. See individual pages for details.
<details> <summary>MS MARCO V1 Passage Regressions</summary>| dev | DL19 | DL20 | |
|---|---|---|---|
| Unsupervised Sparse | |||
| Lucene BoW baselines | 🔑 | 🔑 | 🔑 |
| Quantized BM25 | 🔑 | 🔑 | 🔑 |
| WordPiece baselines (pre-tokenized) | 🔑 | 🔑 | 🔑 |
| WordPiece baselines (Huggingface) | 🔑 | 🔑 | 🔑 |
| WordPiece + Lucene BoW baselines | 🔑 | 🔑 | 🔑 |
| doc2query | 🔑 | ||
| doc2query-T5 | 🔑 | 🔑 | 🔑 |
| Learned Sparse (uniCOIL family) | |||
| uniCOIL noexp | 🫙 | 🫙 | 🫙 |
| uniCOIL with doc2query-T5 | 🫙 | 🫙 | 🫙 |
| uniCOIL with TILDE | 🫙 | ||
| Learned Sparse (other) | |||
| DeepImpact | 🫙 | ||
| SPLADEv2 | 🫙 | ||
| SPLADE++ CoCondenser-EnsembleDistil | 🫙🅾️ | 🫙🅾️ | 🫙🅾️ |
| SPLADE++ CoCondenser-SelfDistil | 🫙🅾️ | 🫙🅾️ | 🫙🅾️ |
| Learned Dense (HNSW indexes) | |||
| cosDPR-distil | full:🫙🅾️ int8:🫙🅾️ | full:🫙🅾️ int8:🫙🅾️ | full:🫙🅾️ int8:🫙🅾️ |
| BGE-base-en-v1.5 | full:🫙🅾️ int8:🫙🅾️ | full:🫙🅾️ int8:🫙🅾️ | full:🫙🅾️ |


免费创建高清无水印Sora视频
Vora是一个免费创建高清无水印Sora视频的AI工具


最适合小白的AI自动化工作流平台
无需编码,轻松生成可复用、可变现的AI自动化工作流

大模型驱动的Excel数据处理工具
基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。


AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。


AI论文写作指导平台
AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。


AI一键生成PPT,就用博思AIPPT!
博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。


AI赋能电商视觉革命,一站式智能商拍平台
潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。


企业专属的AI法律顾问
iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。


稳定高效的流量提升解决方案,助力品牌曝光
稳定高效的流量提升解决方案,助力品牌曝光


最新版Sora2模型免费使用,一键生成无水印视频
最新版Sora2模型免费使用,一键生成无水印视频