anserini

anserini

开源可复现信息检索研究工具包

Anserini是基于Lucene开发的开源信息检索工具包,致力于推动可复现的学术研究。该工具包提供从索引构建到结果评估的端到端实验支持,实现了BM25、doc2query-T5、SPLADE等多种先进检索模型。Anserini可应用于各类标准IR测试集,有助于缩小信息检索研究与实际搜索应用之间的差距。

Anserini信息检索Lucene回归实验MS MARCOGithub开源项目

Anserini <img src="docs/anserini-logo.png" width="300" />

build codecov Generic badge Maven Central LICENSE doi

Anserini is a toolkit for reproducible information retrieval research. By building on Lucene, we aim to bridge the gap between academic information retrieval research and the practice of building real-world search applications. Among other goals, our effort aims to be the opposite of this.* Anserini grew out of a reproducibility study of various open-source retrieval engines in 2016 (Lin et al., ECIR 2016). See Yang et al. (SIGIR 2017) and Yang et al. (JDIQ 2018) for overviews.

❗ Anserini was upgraded from JDK 11 to JDK 21 at commit 272565 (2024/04/03), which corresponds to the release of v0.35.0.

💥 Try It!

Anserini is packaged in a self-contained fatjar, which also provides the simplest way to get started. Assuming you've already got Java installed, fetch the fatjar:

wget https://repo1.maven.org/maven2/io/anserini/anserini/0.36.1/anserini-0.36.1-fatjar.jar

The follow commands will generate a SPLADE++ ED run with the dev queries (encoded using ONNX) on the MS MARCO passage corpus:

java -cp anserini-0.36.1-fatjar.jar io.anserini.search.SearchCollection \ -index msmarco-v1-passage.splade-pp-ed \ -topics msmarco-v1-passage.dev \ -encoder SpladePlusPlusEnsembleDistil \ -output run.msmarco-v1-passage-dev.splade-pp-ed-onnx.txt \ -impact -pretokenized

To evaluate:

java -cp anserini-0.36.1-fatjar.jar trec_eval -c -M 10 -m recip_rank msmarco-passage.dev-subset run.msmarco-v1-passage-dev.splade-pp-ed-onnx.txt

See detailed instructions for the current fatjar release of Anserini (v0.36.1) to reproduce regression experiments on the MS MARCO V2.1 corpora for TREC 2024 RAG, on MS MARCO V1 Passage, and on BEIR, all directly from the fatjar!

<!-- We also have [forthcoming instructions](docs/fatjar-regressions/fatjar-regressions-v0.36.2-SNAPSHOT.md) for the next release (v0.36.2-SNAPSHOT) if you're interested. --> <details> <summary>Older instructions</summary> </details>

🎬 Installation

Most Anserini features are exposed in the Pyserini Python interface. If you're more comfortable with Python, start there, although Anserini forms an important building block of Pyserini, so it remains worthwhile to learn about Anserini.

You'll need Java 21 and Maven 3.9+ to build Anserini. Clone our repo with the --recurse-submodules option to make sure the eval/ submodule also gets cloned (alternatively, use git submodule update --init). Then, build using Maven:

mvn clean package

The tools/ directory, which contains evaluation tools and other scripts, is actually this repo, integrated as a Git submodule (so that it can be shared across related projects). Build as follows (you might get warnings, but okay to ignore):

cd tools/eval && tar xvfz trec_eval.9.0.4.tar.gz && cd trec_eval.9.0.4 && make && cd ../../.. cd tools/eval/ndeval && make && cd ../../..

With that, you should be ready to go. The onboarding path for Anserini starts here!

<details> <summary>Windows tips</summary>

If you are using Windows, please use WSL2 to build Anserini. Please refer to the WSL2 Installation document to install WSL2 if you haven't already.

Note that on Windows without WSL2, tests may fail due to encoding issues, see #1466. A simple workaround is to skip tests by adding -Dmaven.test.skip=true to the above mvn command. See #1121 for additional discussions on debugging Windows build errors.

</details>

⚗️ End-to-End Regression Experiments

Anserini is designed to support end-to-end experiments on various standard IR test collections out of the box. Each of these end-to-end regressions starts from the raw corpus, builds the necessary index, performs retrieval runs, and generates evaluation results. See individual pages for details.

<details> <summary>MS MARCO V1 Passage Regressions</summary>

MS MARCO V1 Passage Regressions

devDL19DL20
Unsupervised Sparse
Lucene BoW baselines🔑🔑🔑
Quantized BM25🔑🔑🔑
WordPiece baselines (pre-tokenized)🔑🔑🔑
WordPiece baselines (Huggingface)🔑🔑🔑
WordPiece + Lucene BoW baselines🔑🔑🔑
doc2query🔑
doc2query-T5🔑🔑🔑
Learned Sparse (uniCOIL family)
uniCOIL noexp🫙🫙🫙
uniCOIL with doc2query-T5🫙🫙🫙
uniCOIL with TILDE🫙
Learned Sparse (other)
DeepImpact🫙
SPLADEv2🫙
SPLADE++ CoCondenser-EnsembleDistil🫙🅾️🫙🅾️🫙🅾️
SPLADE++ CoCondenser-SelfDistil🫙🅾️🫙🅾️🫙🅾️
Learned Dense (HNSW indexes)
cosDPR-distilfull:🫙🅾️ int8:🫙🅾️full:🫙🅾️ int8:🫙🅾️full:🫙🅾️ int8:🫙🅾️
BGE-base-en-v1.5full:🫙🅾️ int8:🫙🅾️full:🫙🅾️ int8:🫙🅾️full:🫙🅾️

编辑推荐精选

扣子-AI办公

扣子-AI办公

职场AI,就用扣子

AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!

堆友

堆友

多风格AI绘画神器

堆友平台由阿里巴巴设计团队创建,作为一款AI驱动的设计工具,专为设计师提供一站式增长服务。功能覆盖海量3D素材、AI绘画、实时渲染以及专业抠图,显著提升设计品质和效率。平台不仅提供工具,还是一个促进创意交流和个人发展的空间,界面友好,适合所有级别的设计师和创意工作者。

图像生成AI工具AI反应堆AI工具箱AI绘画GOAI艺术字堆友相机AI图像热门
码上飞

码上飞

零代码AI应用开发平台

零代码AI应用开发平台,用户只需一句话简单描述需求,AI能自动生成小程序、APP或H5网页应用,无需编写代码。

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

下拉加载更多