基于混合提示正则化的零样本异常分割方法
Segment-Any-Anomaly项目提出了一种基于混合提示正则化的零样本异常分割方法。该方法通过适配Grounding DINO和Segment Anything等基础模型,实现了对多种异常检测数据集的高效分割。项目在MVTec-AD、VisA等公开数据集上展现出优秀性能,并在VAND工作坊竞赛中取得佳绩。仓库包含完整代码实现、演示和使用说明,便于研究者复现和应用。
这个仓库包含了通过混合提示正则化实现无需训练的任意异常分割,SAA+的官方实现。
SAA+旨在无需训练即可分割任意异常。我们通过混合提示正则化来适配现有的基础模型,即Grounding DINO和Segment Anything,来实现这一目标。
我们发现,简单组合基础模型会导致严重的语言歧义。因此,我们引入了源自领域专家知识和目标图像上下文的混合提示,以缓解语言歧义。框架如下图所示:
我们在四个公开数据集上评估SAA+:MVTec-AD、VisA、KSDD2和MTD。此外,SAA+是VAND研讨会的获胜团队之一,该研讨会提供了一个特定的数据集VisA-Challenge。要准备数据集,请按照以下说明操作:
默认情况下,我们将数据保存在../datasets
目录中。
cd $ProjectRoot # 例如,/home/SAA cd .. mkdir datasets cd datasets
然后,按照相应的说明准备各个数据集:
您可以使用我们的脚本一键设置环境并下载检查点。
cd $ProjectRoot bash install.sh
MVTec-AD
python run_MVTec.py
VisA-Public
python run_VisA_public.py
VisA-Challenge
python run_VAND_workshop.py
提交文件可在./result_VAND_workshop/visa_challenge-k-0/0shot
中找到。
KSDD2
python run_KSDD2.py
MTD
python run_MTD.py
运行以下命令获取演示结果
python demo.py
我们计划在近期添加以下功能:
我们的工作在很大程度上受到以下项目的启发。感谢他们令人钦佩的贡献。
如果您发现这个项目对您的研究有帮助,请考虑引用以下BibTeX条目。
@article{cao_segment_2023, title = {Segment Any Anomaly without Training via Hybrid Prompt Regularization}, url = {http://arxiv.org/abs/2305.10724}, number = {{arXiv}:2305.10724}, publisher = {{arXiv}}, author = {Cao, Yunkang and Xu, Xiaohao and Sun, Chen and Cheng, Yuqi and Du, Zongwei and Gao, Liang and Shen, Weiming}, urldate = {2023-05-19}, date = {2023-05-18}, langid = {english}, eprinttype = {arxiv}, eprint = {2305.10724 [cs]}, keywords = {Computer Science - Computer Vision and Pattern Recognition, Computer Science - Artificial Intelligence}, } @article{kirillov2023segany, title={Segment Anything}, author={Kirillov, Alexander and Mintun, Eric and Ravi, Nikhila and Mao, Hanzi and Rolland, Chloe and Gustafson, Laura and Xiao, Tete and Whitehead, Spencer and Berg, Alexander C. and Lo, Wan-Yen and Doll{\'a}r, Piotr and Girshick, Ross}, journal={arXiv:2304.02643}, year={2023} } @inproceedings{ShilongLiu2023GroundingDM, title={Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection}, author={Shilong Liu and Zhaoyang Zeng and Tianhe Ren and Feng Li and Hao Zhang and Jie Yang and Chunyuan Li and Jianwei Yang and Hang Su and Jun Zhu and Lei Zhang}, year={2023} }
AI数字人视频创作平台
Keevx 一款开箱即用的AI数字人视频创作平台,广泛适用于电商广告、企业培训与社媒宣传,让全球企业与个人创作者无需拍摄剪辑,就能快速生成多语言、高质量的专业视频。
一站式AI创作平台
提供 AI 驱动的图片、视频生成及数字人等功能,助力创意创作
AI办公助手,复杂任务高效处理
AI办公助手,复杂任务高效处理。办公效率低?扣子空间AI助手支持播客生成、PPT制作、网页开发及报告写作,覆盖科研、商业、舆情等领域的专家Agent 7x24小时响应,生活工作无缝切换,提升50%效率!
AI辅助编程,代码自动修复
Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作 改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。
AI小说写作助手,一站式润色、改写、扩写
蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。
全能AI智能助手,随时解答生活与工作的多样问题
问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。
实时语音翻译/同声传译工具
Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。
一键生成PPT和Word,让学习生活更轻松
讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都 能提供支持,帮助用户精准表达,轻松呈现各种信息。
深度推理能力全新升级,全面对标OpenAI o1
科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。
一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型
Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。