RSN

RSN

高效聚合特征实现精确人体姿态估计

RSN项目提出Residual Steps Network姿态估计方法,通过聚合同一空间尺度特征获得精细局部表示,实现精确关键点定位。项目引入Pose Refine Machine注意力机制进一步优化关键点位置。RSN在COCO和MPII基准测试中取得领先结果,并在2019年COCO关键点挑战赛中获得第一名和最佳论文奖。该方法在多人姿态估计任务中展现出优异性能。

RSN姿态估计COCO数据集关键点检测计算机视觉Github开源项目

PWC

PWC PWC

PWC PWC

学习多人姿态估计的精细局部表征(ECCV 2020聚焦)

获奖者 最佳论文奖 arXiv 知乎

*这是[残差步骤网络][11]的PyTorch实现,该网络在2019年COCO关键点挑战赛中获胜,并在COCO测试开发集和测试挑战集上排名第一,如[COCO排行榜][1]所示

<div align="center"> <p align="center"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/09e30a73-b172-47cf-848f-4a231b1024e4.png" width="410px"> <img src="https://yellow-cdn.veclightyear.com/835a84d5/a6b77d1d-816f-496a-bbb6-feeba5196325.png" width="410px"></p> </div>

新闻

  • 2020年9月: 我们的RSN已被整合到优秀的MMPose框架中。感谢他们的努力。欢迎使用他们的代码库预训练模型库。⭐
  • 2020年7月: 我们的论文被ECCV 2020接收为Spotlight论文 :rocket:
  • 2019年9月: 我们的工作在COCO 2019关键点挑战赛中获得第一名最佳论文奖 :trophy:
<hr />

摘要: 在本文中,我们提出了一种新颖的方法,称为残差步骤网络(RSN)。RSN有效地聚合具有相同空间大小的特征(层内特征),以获得精细的局部表征,保留丰富的低层空间信息,从而实现精确的关键点定位。此外,我们提出了一种高效的注意力机制 - 姿态优化机(PRM)来进一步优化关键点位置。我们的方法在2019年COCO关键点挑战赛中获得第一名,并在COCO和MPII基准测试中取得了最先进的结果,且没有使用额外的训练数据和预训练模型。我们的单一模型在COCO测试开发集上达到78.6,在MPII测试数据集上达到93.0。集成模型在COCO测试开发集上达到79.2,在COCO测试挑战集上达到77.1。

<hr />

残差步骤网络的流程

RSN概述。

姿态优化机的架构

RSN概述。

我们方法在COCO和MPII验证数据集上的一些预测结果

COCO验证集的预测结果。

MPII验证集的预测结果。

结果(原始版本)

COCO验证数据集上的结果

模型输入尺寸GFLOPsAPAP<sup>50</sup>AP<sup>75</sup>AP<sup>M</sup>AP<sup>L</sup>AR
Res-18256x1922.370.789.577.566.875.975.8
RSN-18256x1922.573.690.580.967.879.178.8
RSN-50256x1926.474.791.481.571.080.280.0
RSN-101256x19211.575.892.483.072.181.281.1
2×RSN-50256x19213.977.292.384.073.882.582.2
3×RSN-50256x19220.778.292.385.174.783.783.1
4×RSN-50256x19229.379.092.585.775.284.583.7
4×RSN-50384x28865.979.692.585.875.585.284.2

COCO测试开发数据集上的结果

模型输入尺寸GFLOPsAPAP<sup>50</sup>AP<sup>75</sup>AP<sup>M</sup>AP<sup>L</sup>AR
RSN-18256x1922.571.692.680.368.875.877.7
RSN-50256x1926.472.593.081.369.976.578.8
2×RSN-50256x19213.975.593.684.073.079.681.3
4×RSN-50256x19229.378.094.286.575.382.283.4
4×RSN-50384x28865.978.694.386.675.583.383.8
4×RSN-50<sup>+</sup>--79.294.487.176.183.884.1

COCO测试挑战数据集上的结果

模型输入尺寸GFLOPsAPAP<sup>50</sup>AP<sup>75</sup>AP<sup>M</sup>AP<sup>L</sup>AR
4×RSN-50<sup>+</sup>--77.193.383.672.283.682.6

MPII数据集上的结果

模型分割输入尺寸头部肩部肘部手腕臀部膝盖脚踝平均
4×RSN-50验证256x25696.796.792.388.290.389.085.391.6
4×RSN-50测试256x25698.597.393.989.992.090.686.893.0

结果(Pytorch版本)

COCO验证集结果

模型输入尺寸GFLOPsAPAP<sup>50</sup>AP<sup>75</sup>AP<sup>M</sup>AP<sup>L</sup>AR
Res-18256x1922.365.287.371.561.272.271.3
RSN-18256x1922.570.488.877.767.276.776.5

注意

  • + 表示使用集成模型。
  • 所有模型均在8块V100 GPU上训练。
  • 我们使用自己原创的深度学习平台进行了所有实验,论文中的所有结果都是在这个平台上报告的。它与Pytorch之间存在一些差异。

仓库结构

本仓库的组织结构如下:

$RSN_HOME
|-- cvpack
|
|-- dataset
|   |-- COCO
|   |   |-- det_json
|   |   |-- gt_json
|   |   |-- images
|   |       |-- train2014
|   |       |-- val2014
|   |
|   |-- MPII
|       |-- det_json
|       |-- gt_json
|       |-- images
|   
|-- lib
|   |-- models
|   |-- utils
|
|-- exps
|   |-- exp1
|   |-- exp2
|   |-- ...
|
|-- model_logs
|
|-- README.md
|-- requirements.txt

快速开始

安装

  1. 参考[Pytorch网站][2]安装Pytorch。

  2. 克隆本仓库,并在**/etc/profile~/.bashrc中配置RSN_HOME**,例如:

export RSN_HOME='/path/of/your/cloned/repo'
export PYTHONPATH=$PYTHONPATH:$RSN_HOME
  1. 安装依赖:
pip3 install -r requirements.txt
  1. 参考[cocoapi网站][3]安装COCOAPI,或者:
git clone https://github.com/cocodataset/cocoapi.git $RSN_HOME/lib/COCOAPI
cd $RSN_HOME/lib/COCOAPI/PythonAPI
make install

数据集

COCO

  1. 从[COCO网站][4]下载图片,并将train2014/val2014分别放入**$RSN_HOME/dataset/COCO/images/**。

  2. 从[Google Drive][6]或[百度网盘][10](提取码:fc51)下载ground truth,并放入**$RSN_HOME/dataset/COCO/gt_json/**。

  3. 从[Google Drive][6]或[百度网盘][10](提取码:fc51)下载检测结果,并放入**$RSN_HOME/dataset/COCO/det_json/**。

MPII

  1. 从[MPII网站][5]下载图片,并将图片放入**$RSN_HOME/dataset/MPII/images/**。

  2. 从[Google Drive][6]或[百度网盘][10](提取码:fc51)下载ground truth,并放入**$RSN_HOME/dataset/MPII/gt_json/**。

  3. 从[Google Drive][6]或[百度网盘][10](提取码:fc51)下载检测结果,并放入**$RSN_HOME/dataset/MPII/det_json/**。

日志

创建一个目录来保存日志和模型:

mkdir $RSN_HOME/model_logs

训练

进入指定的实验目录,例如:

cd $RSN_HOME/exps/RSN50.coco

然后运行:

python config.py -log
python -m torch.distributed.launch --nproc_per_node=gpu_num train.py

其中gpu_num是GPU的数量。

测试

python -m torch.distributed.launch --nproc_per_node=gpu_num test.py -i iter_num

其中gpu_num是GPU的数量,iter_num是你想要测试的迭代次数。

引用

如果我们的项目对您的研究有帮助,请考虑在您的出版物中引用它们。

@inproceedings{cai2020learning,
  title={Learning Delicate Local Representations for Multi-Person Pose Estimation},
  author={Yuanhao Cai and Zhicheng Wang and Zhengxiong Luo and Binyi Yin and Angang Du and Haoqian Wang and Xinyu Zhou and Erjin Zhou and Xiangyu Zhang and Jian Sun},
  booktitle={ECCV},
  year={2020}
}

@inproceedings{cai2019res,
  title={Res-steps-net for multi-person pose estimation},
  author={Cai, Yuanhao and Wang, Zhicheng and Yin, Binyi and Yin, Ruihao and Du, Angang and Luo, Zhengxiong and Li, Zeming and Zhou, Xinyu and Yu, Gang and Zhou, Erjin and others},
  booktitle={Joint COCO and Mapillary Workshop at ICCV},
  year={2019}
}

编辑推荐精选

Vora

Vora

免费创建高清无水印Sora视频

Vora是一个免费创建高清无水印Sora视频的AI工具

Refly.AI

Refly.AI

最适合小白的AI自动化工作流平台

无需编码,轻松生成可复用、可变现的AI自动化工作流

酷表ChatExcel

酷表ChatExcel

大模型驱动的Excel数据处理工具

基于大模型交互的表格处理系统,允许用户通过对话方式完成数据整理和可视化分析。系统采用机器学习算法解析用户指令,自动执行排序、公式计算和数据透视等操作,支持多种文件格式导入导出。数据处理响应速度保持在0.8秒以内,支持超过100万行数据的即时分析。

AI工具酷表ChatExcelAI智能客服AI营销产品使用教程
TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
AIWritePaper论文写作

AIWritePaper论文写作

AI论文写作指导平台

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

AI辅助写作AI工具AI论文工具论文写作智能生成大纲数据安全AI助手热门
博思AIPPT

博思AIPPT

AI一键生成PPT,就用博思AIPPT!

博思AIPPT,新一代的AI生成PPT平台,支持智能生成PPT、AI美化PPT、文本&链接生成PPT、导入Word/PDF/Markdown文档生成PPT等,内置海量精美PPT模板,涵盖商务、教育、科技等不同风格,同时针对每个页面提供多种版式,一键自适应切换,完美适配各种办公场景。

AI办公办公工具AI工具博思AIPPTAI生成PPT智能排版海量精品模板AI创作热门
潮际好麦

潮际好麦

AI赋能电商视觉革命,一站式智能商拍平台

潮际好麦深耕服装行业,是国内AI试衣效果最好的软件。使用先进AIGC能力为电商卖家批量提供优质的、低成本的商拍图。合作品牌有Shein、Lazada、安踏、百丽等65个国内外头部品牌,以及国内10万+淘宝、天猫、京东等主流平台的品牌商家,为卖家节省将近85%的出图成本,提升约3倍出图效率,让品牌能够快速上架。

iTerms

iTerms

企业专属的AI法律顾问

iTerms是法大大集团旗下法律子品牌,基于最先进的大语言模型(LLM)、专业的法律知识库和强大的智能体架构,帮助企业扫清合规障碍,筑牢风控防线,成为您企业专属的AI法律顾问。

SimilarWeb流量提升

SimilarWeb流量提升

稳定高效的流量提升解决方案,助力品牌曝光

稳定高效的流量提升解决方案,助力品牌曝光

Sora2视频免费生成

Sora2视频免费生成

最新版Sora2模型免费使用,一键生成无水印视频

最新版Sora2模型免费使用,一键生成无水印视频

下拉加载更多