kotlingrad

kotlingrad

Kotlin∇ 类型安全的JVM符号微分框架

Kotlin∇是一个为JVM平台开发的类型安全自动微分框架。它支持高维数据结构和运算符,通过类型系统确保代数约束,减少运行时错误。框架功能包括标量、向量和矩阵运算,形状安全的代数操作,以及偏微分和高阶微分。Kotlin∇还提供符号微分恢复和数值梯度检查,为开发者提供全面的微分编程工具。

Kotlin自动微分类型安全符号微分张量运算Github开源项目
<!--- @file:Suppress("ClassName") ---> <!--- @file:Suppress("PropertyName") --->

Kotlin∇: Type-safe Symbolic Differentiation for the JVM

Kotlin 1.6.20 Maven Central CI DOI

Kotlin∇ is a type-safe automatic differentiation framework written in Kotlin. It allows users to express differentiable programs with higher-dimensional data structures and operators. We attempt to restrict syntactically valid constructions to those which are algebraically valid and can be checked at compile-time. By enforcing these constraints in the type system, it eliminates certain classes of runtime errors that may occur during the execution of a differentiable program. Due to type-inference, most type declarations may be safely omitted by the end-user. Kotlin∇ strives to be expressive, safe, and notationally similar to mathematics.

Table of contents

Introduction

Inspired by Stalin∇, Autograd, DiffSharp, Myia, Nexus, Tangent, Lantern et al., Kotlin∇ attempts to port recent advancements in automatic differentiation (AD) to the Kotlin language. AD is useful for gradient descent and has a variety of applications in numerical optimization and machine learning. Our implementation adds a number of experimental ideas, including compile-time shape-safety, algebraic simplification and numerical stability checking with property-based testing. We aim to provide an algebraically-grounded implementation of AD for shape-safe tensor operations. Tensors in Kotlin∇ are represented as multidimensional arrays.

Features

Kotlin∇ currently supports the following features:

  • Arithmetical operations on scalars, vectors and matrices
  • Shape-safe vector and matrix algebra
  • Partial and higher-order differentiation on scalars
  • Property-based testing for numerical gradient checking
  • Recovery of symbolic derivatives from AD

Additionally, it aims to support:

All of these features are implemented without access to bytecode or special compiler tricks - just using higher-order functions and lambdas as shown in Lambda the Ultimate Backpropogator, embedded DSLs a la Lightweight Modular Staging, and ordinary generics. Please see below for a more detailed feature comparison.

Usage

Installation

Kotlin∇ is hosted on Maven Central. An example project is provided here.

Gradle

dependencies { implementation("ai.hypergraph:kotlingrad:0.4.7") }

Maven

<dependency> <groupId>ai.hypergraph</groupId> <artifactId>kotlingrad</artifactId> <version>0.4.7</version> </dependency>

Jupyter Notebook

To access Kotlin∇'s notebook support, use the following line magic:

@file:DependsOn("ai.hypergraph:kotlingrad:0.4.7")

For more information, explore the tutorial.

Notation

Kotlin∇ operators are higher-order functions, which take at most two inputs and return a single output, all of which are functions with the same numerical type, and whose shape is denoted using superscript in the rightmost column below.

MathInfix <sup></sup>PrefixPostfix<sup></sup>Operator Type Signature
$$\mathbf{A}(\mathbf{B})$$<br>$$\mathbf{A}\circ\mathbf{B}$$a(b)<br>a of b$$(\texttt{a}: ℝ^{τ}→ℝ^{π}, \texttt{b}: ℝ^{λ} → ℝ^{τ}) → (ℝ^{λ}→ℝ^{π})$$
$$\mathbf{A}\pm\mathbf{B}$$a + b<br>a - bplus(a, b)<br>minus(a, b)$$(\texttt{a}: ℝ^{τ}→ℝ^{π}, \texttt{b}: ℝ^{λ} → ℝ^{π}) → (ℝ^{?}→ℝ^{π})$$
$$\mathbf{A}\mathbf{B}$$a * b<br>a.times(b)times(a, b)$$(\texttt{a}: ℝ^{τ}→ℝ^{m×n}, \texttt{b}: ℝ^{λ}→ℝ^{n×p}) → (ℝ^{?}→ℝ^{m×p})$$
$$\frac{\mathbf{A}}{\mathbf{B}}$$<br>$$\mathbf{A}\mathbf{B}^{-1}$$a / b<br>a.div(b)div(a, b)$$(\texttt{a}: ℝ^{τ}→ℝ^{m×n}, \texttt{b}: ℝ^{λ}→ℝ^{p×n}) → (ℝ^{?}→ℝ^{m×p})$$
$$\pm\mathbf{A}$$-a<br>+aa.neg()<br>a.pos()$$(\texttt{a}: ℝ^{τ}→ℝ^{π}) → (ℝ^{τ}→ℝ^{π})$$
$$\sin{a}$$<br>$$\cos{a}$$<br>$$\tan{a}$$sin(a)<br>cos(a)<br>tan(a)a.sin()<br>a.cos()<br>a.tan()$$(\texttt{a}: ℝ→ℝ) → (ℝ→ℝ)$$
$$\ln{a}$$ln(a)<br>log(a)a.ln()<br>a.log()$$(\texttt{a}: ℝ^{τ}→ℝ^{m×m}) → (ℝ^{τ}→ℝ^{m×m})$$
$$\log_{b}a$$a.log(b)log(a, b)$$(\texttt{a}: ℝ^{τ}→ℝ^{m×m}, \texttt{b}: ℝ^{λ}→ℝ^{m×m}) → (ℝ^{?}→ℝ)$$
$$\mathbf{A}^b$$a.pow(b)pow(a, b)$$(\texttt{a}: ℝ^{τ}→ℝ^{m×m}, \texttt{b}: ℝ^{λ}→ℝ) → (ℝ^{?}→ℝ^{m×m})$$
$$\sqrt{A}$$<br>$$\sqrt[3]{A}$$a.pow(1.0/2)<br>a.root(3)sqrt(a)<br>cbrt(a)a.sqrt()<br>a.cbrt()$$(\texttt{a}: ℝ^{τ}→ℝ^{m×m}) → (ℝ^{τ}→ℝ^{m×m})$$
$$\frac{da}{db},\frac{\partial{a}}{\partial{b}}$$ <br> $$D_b{a}$$a.d(b)<br>d(a) / d(b)grad(a)[b]$$(\texttt{a}: C(ℝ^{τ}→ℝ)^{*}, \texttt{b}: C(ℝ^{λ}→ℝ)) → (ℝ^{?}→ℝ)$$
$$\nabla{a}$$grad(a)a.grad()$$(\texttt{a}: C(ℝ^{τ}→ℝ)) → (ℝ^{τ}→ℝ^{τ})$$
$$\nabla_{\mathbf{B}}a$$a.d(b)<br>a.grad(b)grad(a, b)<br>grad(a)[b]$$(\texttt{a}: C(ℝ^{τ}→ℝ^{π}), \texttt{b}: C(ℝ^{λ}→ℝ^{ω})) → (ℝ^{?}→ℝ^{π×ω})$$
$$\nabla\cdot{\mathbf{A}}$$divg(a)a.divg()$$(\texttt{a}: C(ℝ^{τ}→ℝ^{m})) → (ℝ^{τ}→ℝ)$$
$$\nabla\times{\mathbf{A}}$$curl(a)a.curl()$$(\texttt{a}: C(ℝ^{3}→ℝ^{3})) → (ℝ^{3}→ℝ^{3})$$
$$\mathcal{J}(\mathbf{A})$$grad(a)a.grad()$$(\texttt{a}: C(ℝ^{τ}→ℝ^{m})) → (ℝ^{τ}→ℝ^{m×τ})$$
$$\mathbf{H}(a)$$hess(a)a.hess()$$(\texttt{a}: C(ℝ^{τ}→ℝ)) → (ℝ^{τ}→ℝ^{τ×τ})$$
$$\Delta{a},\nabla^{2}a$$lapl(a)a.lapl()$$(\texttt{a}: C(ℝ^{τ}→ℝ)) → (ℝ^{τ}→ℝ^{τ})$$

ℝ can be a Double, Float or BigDecimal. Specialized operators are defined for subsets of ℝ, e.g., Int, Short or BigInteger for subsets of ℤ, however differentiation is only defined for continuously differentiable functions on ℝ.

<sup></sup> a and b are higher-order functions. These may be constants (e.g., 0, 1.0), variables (e.g., Var()) or expressions (e.g., x + 1, 2 * x + y).

<sup></sup> For infix notation, . is optional. Parentheses are also optional depending on precedence.

<sup>§</sup> Matrix division is defined iff B is invertible, although it could be possible to redefine this operator using the Moore-Penrose inverse.

<sup></sup> Where C(ℝ<sup>m</sup>) is the space of all continuous functions over ℝ. If the function is not over ℝ, it will fail at compile-time. If the function is over ℝ but not continuous differentiable at the point under consideration, it will fail at runtime.

<sup>?</sup> The input shape is tracked at runtime, but not at the type level. While it would be nice to infer a union type bound over the inputs of binary functions, it is likely impossible using the Kotlin type system without great effort. If the user desires type checking when invoking higher order functions with literal values, they will need to specify the combined input type explicitly or do so at runtime.

<sup>τ, λ, π, ω</sup> Arbitrary products.

Higher-Rank Derivatives

Kotlin∇ supports derivatives between tensors of up to rank 2. The shape of a tensor derivative depends on (1) the shape of the function under differentiation and (2) the shape of the variable with respect to which we are differentiating.

I/O Shape$$ℝ^{?}→ℝ$$$$ℝ^{?}→ℝ^{m}$$$$ℝ^{?}→ℝ^{j×k}$$
$$ℝ^{?}→ℝ$$$$ℝ^{?}→ℝ$$$$ℝ^{?}→ℝ^{m}$$$$ℝ^{?}→ℝ^{j×k}$$
$$ℝ^{?}→ℝ^{n}$$$$ℝ^{?}→ℝ^{n}$$

编辑推荐精选

TRAE编程

TRAE编程

AI辅助编程,代码自动修复

Trae是一种自适应的集成开发环境(IDE),通过自动化和多元协作改变开发流程。利用Trae,团队能够更快速、精确地编写和部署代码,从而提高编程效率和项目交付速度。Trae具备上下文感知和代码自动完成功能,是提升开发效率的理想工具。

AI工具TraeAI IDE协作生产力转型热门
蛙蛙写作

蛙蛙写作

AI小说写作助手,一站式润色、改写、扩写

蛙蛙写作—国内先进的AI写作平台,涵盖小说、学术、社交媒体等多场景。提供续写、改写、润色等功能,助力创作者高效优化写作流程。界面简洁,功能全面,适合各类写作者提升内容品质和工作效率。

AI辅助写作AI工具蛙蛙写作AI写作工具学术助手办公助手营销助手AI助手
问小白

问小白

全能AI智能助手,随时解答生活与工作的多样问题

问小白,由元石科技研发的AI智能助手,快速准确地解答各种生活和工作问题,包括但不限于搜索、规划和社交互动,帮助用户在日常生活中提高效率,轻松管理个人事务。

热门AI助手AI对话AI工具聊天机器人
Transly

Transly

实时语音翻译/同声传译工具

Transly是一个多场景的AI大语言模型驱动的同声传译、专业翻译助手,它拥有超精准的音频识别翻译能力,几乎零延迟的使用体验和支持多国语言可以让你带它走遍全球,无论你是留学生、商务人士、韩剧美剧爱好者,还是出国游玩、多国会议、跨国追星等等,都可以满足你所有需要同传的场景需求,线上线下通用,扫除语言障碍,让全世界的语言交流不再有国界。

讯飞智文

讯飞智文

一键生成PPT和Word,让学习生活更轻松

讯飞智文是一个利用 AI 技术的项目,能够帮助用户生成 PPT 以及各类文档。无论是商业领域的市场分析报告、年度目标制定,还是学生群体的职业生涯规划、实习避坑指南,亦或是活动策划、旅游攻略等内容,它都能提供支持,帮助用户精准表达,轻松呈现各种信息。

AI办公办公工具AI工具讯飞智文AI在线生成PPTAI撰写助手多语种文档生成AI自动配图热门
讯飞星火

讯飞星火

深度推理能力全新升级,全面对标OpenAI o1

科大讯飞的星火大模型,支持语言理解、知识问答和文本创作等多功能,适用于多种文件和业务场景,提升办公和日常生活的效率。讯飞星火是一个提供丰富智能服务的平台,涵盖科技资讯、图像创作、写作辅助、编程解答、科研文献解读等功能,能为不同需求的用户提供便捷高效的帮助,助力用户轻松获取信息、解决问题,满足多样化使用场景。

热门AI开发模型训练AI工具讯飞星火大模型智能问答内容创作多语种支持智慧生活
Spark-TTS

Spark-TTS

一种基于大语言模型的高效单流解耦语音令牌文本到语音合成模型

Spark-TTS 是一个基于 PyTorch 的开源文本到语音合成项目,由多个知名机构联合参与。该项目提供了高效的 LLM(大语言模型)驱动的语音合成方案,支持语音克隆和语音创建功能,可通过命令行界面(CLI)和 Web UI 两种方式使用。用户可以根据需求调整语音的性别、音高、速度等参数,生成高质量的语音。该项目适用于多种场景,如有声读物制作、智能语音助手开发等。

咔片PPT

咔片PPT

AI助力,做PPT更简单!

咔片是一款轻量化在线演示设计工具,借助 AI 技术,实现从内容生成到智能设计的一站式 PPT 制作服务。支持多种文档格式导入生成 PPT,提供海量模板、智能美化、素材替换等功能,适用于销售、教师、学生等各类人群,能高效制作出高品质 PPT,满足不同场景演示需求。

讯飞绘文

讯飞绘文

选题、配图、成文,一站式创作,让内容运营更高效

讯飞绘文,一个AI集成平台,支持写作、选题、配图、排版和发布。高效生成适用于各类媒体的定制内容,加速品牌传播,提升内容营销效果。

热门AI辅助写作AI工具讯飞绘文内容运营AI创作个性化文章多平台分发AI助手
材料星

材料星

专业的AI公文写作平台,公文写作神器

AI 材料星,专业的 AI 公文写作辅助平台,为体制内工作人员提供高效的公文写作解决方案。拥有海量公文文库、9 大核心 AI 功能,支持 30 + 文稿类型生成,助力快速完成领导讲话、工作总结、述职报告等材料,提升办公效率,是体制打工人的得力写作神器。

下拉加载更多